Compare commits
39 commits
1bc6a09cb0
...
master
Author | SHA1 | Date | |
---|---|---|---|
|
989f91ba25 | ||
|
733fb9b2c6 | ||
|
6eac8ab633 | ||
|
533d9fbc4d | ||
|
c9754a3049 | ||
|
699684a1f1 | ||
|
aaa42c7619 | ||
|
248e906daa | ||
|
f2f3a4140c | ||
|
c2a492766a | ||
|
4fc75cee49 | ||
|
c06c8b36da | ||
|
5f162223e9 | ||
|
0d34ad01d0 | ||
|
7a05d4c181 | ||
48977ffa47 | |||
|
7859d10953 | ||
|
7f32f8e37e | ||
|
b211b2b092 | ||
|
f7c93c5e59 | ||
8e0b941d59 | |||
29c8f07229 | |||
cb46456324 | |||
dcfcdf2b96 | |||
|
42f30ce2a5 | ||
|
38eb7d8b91 | ||
|
a69b5a6c69 | ||
|
efb09471d8 | ||
|
0403a15eea | ||
|
47b521446c | ||
|
91b6105f77 | ||
|
1e9d3a7786 | ||
3c31741db7 | |||
8bf473e564 | |||
826fd7486d | |||
1eaccc234f | |||
9e21c49fc4 | |||
49c4b456da | |||
3c1af1ccb9 |
9 changed files with 515 additions and 187 deletions
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -297,3 +297,5 @@ TSWLatexianTemp*
|
|||
*.glstex
|
||||
|
||||
# End of https://www.toptal.com/developers/gitignore/api/latex
|
||||
|
||||
.DS_Store
|
21
Jenkinsfile
vendored
Normal file
21
Jenkinsfile
vendored
Normal file
|
@ -0,0 +1,21 @@
|
|||
node {
|
||||
stage('Empty workspace') {
|
||||
sh 'rm -rd *'
|
||||
}
|
||||
|
||||
stage('Pull git') {
|
||||
checkout scm
|
||||
}
|
||||
|
||||
stage('Build PDF') {
|
||||
sh 'latexmk -c -xelatex -jobname=mathematik-v-zf Mathematik-V-ZF.tex'
|
||||
}
|
||||
|
||||
stage('Archive PDF') {
|
||||
archiveArtifacts artifacts: 'mathematik-v-zf.pdf', followSymlinks: false
|
||||
}
|
||||
|
||||
stage('Publish PDF') {
|
||||
sh 'scp -i /root/.ssh/id_rsa mathematik-v-zf.pdf thisfro@192.168.178.45:/opt/containers/apache2/html/download/latex-previews/mathematik-v-zf.pdf'
|
||||
}
|
||||
}
|
486
Mathematik-V-ZF.tex
Normal file
486
Mathematik-V-ZF.tex
Normal file
|
@ -0,0 +1,486 @@
|
|||
\documentclass[8pt,landscape]{article}
|
||||
\usepackage[ngerman]{babel}
|
||||
\usepackage{multicol}
|
||||
\usepackage{calc}
|
||||
\usepackage{bookmark}
|
||||
\usepackage{ifthen}
|
||||
\usepackage[a4paper, landscape]{geometry}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{ccicons}
|
||||
\usepackage{amsmath, amsfonts, amssymb, amsthm}
|
||||
\usepackage{listings}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{fontawesome5}
|
||||
\usepackage{xcolor}
|
||||
\usepackage{float}
|
||||
\usepackage{apacite}
|
||||
\usepackage[
|
||||
type={CC},
|
||||
modifier={by-sa},
|
||||
version={3.0}
|
||||
]{doclicense}
|
||||
|
||||
\graphicspath{{./img/}}
|
||||
|
||||
\definecolor{codegreen}{rgb}{0,0.6,0}
|
||||
\definecolor{codegray}{rgb}{0.5,0.5,0.5}
|
||||
\definecolor{codepurple}{rgb}{0.58,0,0.82}
|
||||
\definecolor{backcolour}{rgb}{0.95,0.95,0.92}
|
||||
|
||||
\lstdefinestyle{mystyle}{
|
||||
backgroundcolor=\color{backcolour},
|
||||
commentstyle=\color{codegreen},
|
||||
keywordstyle=\color{magenta},
|
||||
numberstyle=\tiny\color{codegray},
|
||||
stringstyle=\color{codepurple},
|
||||
basicstyle=\ttfamily\footnotesize,
|
||||
breakatwhitespace=false,
|
||||
breaklines=true,
|
||||
captionpos=b,
|
||||
keepspaces=true,
|
||||
numbers=left,
|
||||
numbersep=5pt,
|
||||
showspaces=false,
|
||||
showstringspaces=false,
|
||||
showtabs=false,
|
||||
tabsize=2
|
||||
}
|
||||
|
||||
\lstset{style=mystyle}
|
||||
|
||||
% To make this come out properly in landscape mode, do one of the following
|
||||
% 1.
|
||||
% pdflatex latexsheet.tex
|
||||
%
|
||||
% 2.
|
||||
% latex latexsheet.tex
|
||||
% dvips -P pdf -t landscape latexsheet.dvi
|
||||
% ps2pdf latexsheet.ps
|
||||
|
||||
|
||||
% If you're reading this, be prepared for confusion. Making this was
|
||||
% a learning experience for me, and it shows. Much of the placement
|
||||
% was hacked in; if you make it better, let me know...
|
||||
|
||||
|
||||
% 2008-04
|
||||
% Changed page margin code to use the geometry package. Also added code for
|
||||
% conditional page margins, depending on paper size. Thanks to Uwe Ziegenhagen
|
||||
% for the suggestions.
|
||||
|
||||
% 2006-08
|
||||
% Made changes based on suggestions from Gene Cooperman. <gene at ccs.neu.edu>
|
||||
|
||||
|
||||
% To Do:
|
||||
% \listoffigures \listoftables
|
||||
% \setcounter{secnumdepth}{0}
|
||||
|
||||
|
||||
% This sets page margins to .5 inch if using letter paper, and to 1cm
|
||||
% if using A4 paper. (This probably isn't strictly necessary.)
|
||||
% If using another size paper, use default 1cm margins.
|
||||
\ifthenelse{\lengthtest { \paperwidth = 11in}}
|
||||
{ \geometry{top=.5in,left=.5in,right=.5in,bottom=.5in} }
|
||||
{\ifthenelse{ \lengthtest{ \paperwidth = 297mm}}
|
||||
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
|
||||
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
|
||||
}
|
||||
|
||||
% Turn off header and footer
|
||||
\pagestyle{empty}
|
||||
|
||||
|
||||
% Redefine section commands to use less space
|
||||
\makeatletter
|
||||
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
|
||||
{-1ex plus -.5ex minus -.2ex}%
|
||||
{0.5ex plus .2ex}%x
|
||||
{\normalfont\large\bfseries}}
|
||||
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
|
||||
{-1explus -.5ex minus -.2ex}%
|
||||
{0.5ex plus .2ex}%
|
||||
{\normalfont\normalsize\bfseries}}
|
||||
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
|
||||
{-1ex plus -.5ex minus -.2ex}%
|
||||
{1ex plus .2ex}%
|
||||
{\normalfont\small\bfseries}}
|
||||
|
||||
|
||||
\makeatother
|
||||
|
||||
% Define BibTeX command
|
||||
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
|
||||
T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
|
||||
|
||||
% Don't print section numbers
|
||||
% \setcounter{secnumdepth}{0}
|
||||
|
||||
|
||||
\setlength{\parindent}{0pt}
|
||||
\setlength{\parskip}{0pt plus 0.5ex}
|
||||
|
||||
% -----------------------------------------------------------------------
|
||||
|
||||
\begin{document}
|
||||
|
||||
\raggedright
|
||||
\footnotesize
|
||||
\begin{multicols*}{3}
|
||||
|
||||
|
||||
% multicol parameters
|
||||
% These lengths are set only within the two main columns
|
||||
%\setlength{\columnseprule}{0.25pt}
|
||||
\setlength{\premulticols}{1pt}
|
||||
\setlength{\postmulticols}{1pt}
|
||||
\setlength{\multicolsep}{1pt}
|
||||
\setlength{\columnsep}{2pt}
|
||||
|
||||
\begin{center}
|
||||
\Large{ZF Mathematik V} \\
|
||||
\small{\href{http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheitPre.do?lerneinheitId=150657&semkez=2021S&lang=de}{701-0106-00L}} \\
|
||||
\small{Jannis Portmann \the\year} \\
|
||||
{\ccbysa}
|
||||
\rule{\linewidth}{0.25pt}
|
||||
\end{center}
|
||||
|
||||
\section{Gewöhnliche Differentialgleichungen}
|
||||
\subsection{1. Ordnung}
|
||||
$$\frac{dH}{dt} = v_0 - \frac{H(t)}{\tau}$$
|
||||
|
||||
Eine Lösung davon
|
||||
$$H(t) = (H_0 - v_0\tau)e^{\frac{-t}{\tau}} + v_0 \tau$$
|
||||
kann mit dem Ansatz
|
||||
$$N(t) = B + A e^{-{t/\tau}}$$
|
||||
hergeleitet werden.
|
||||
|
||||
Also gilt für $t \rightarrow \infty$
|
||||
$$N(\infty) = v_0 \tau$$
|
||||
|
||||
\subsection{Fliessgleichgewicht}
|
||||
Für eine Funktion $F$, bei
|
||||
$$\frac{dF}{dt} = 0$$
|
||||
|
||||
\section{Vektoranalysis}
|
||||
\subsection{Satz von Gauss}
|
||||
$$\iint_A \mathrm{div} \, v \, dA = \oint_C \, v \, dr$$
|
||||
Flächenintegral der Divergenz von $v$ = Fluss von $v$ durch Rand $C$
|
||||
|
||||
\subsection{Satz von Stokes}
|
||||
$$\iint_A \mathrm{rot} \, v \, dA = \iint_A \xi \, dA = \oint_C \, v \, ds$$
|
||||
Flächenintegral der Rotation von $v$ = Linienintegral von $v$ entlang $C$ (Zirkulation)
|
||||
|
||||
\vspace{5pt}
|
||||
|
||||
\textbf{Bsp} \\
|
||||
Für eine Vorticity-Dsik mit $\xi = \xi_0$, $r=2R$ soll $u_\varphi$ bei $r=4R$ berechnet werden. \\
|
||||
Der Satz von Stokes lifert:
|
||||
$$\xi_0 \cdot (2R)^2 \pi = \int_0^{2\pi}u_\varphi \cdot 4R \cdot d\varphi$$
|
||||
nach $u_\varphi$ auflösen: $u_\varphi = \frac{1}{2} \xi_0 R$
|
||||
|
||||
\subsection{Koordinatentransformation}
|
||||
Wir verwenden meistens geographische Koordinaten.
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=.15\textwidth]{1024px-Geographic_coordinates_sphere.png}
|
||||
\caption{Geographisches Koorinatensystem}
|
||||
\label{fig:geo-coordinates}
|
||||
\end{figure}
|
||||
|
||||
\vspace{5pt}
|
||||
|
||||
Wir definieren für Kugelkoordinaten einen Würfel mit:
|
||||
$$dx = h_1 \, da$$
|
||||
$$dy = h_2 \, db$$
|
||||
$$dz = h_3 \, dc$$
|
||||
wobei jeweils $\vec{e_x} = \vec{e_a}$ etc. \\
|
||||
Aus dem obigen folgen mit dem Satz von Gauss:
|
||||
$$\mathrm{div} \, v = \frac{1}{h_1 \, h_2} \bigg(\frac{\partial}{\partial a}(u \, h_2) + \frac{\partial}{\partial b}(v \, h_1) \bigg)$$
|
||||
Analog mit dem Satz von Stokes:
|
||||
$$\xi = \frac{1}{r \, \cos\varphi} \frac{\partial v}{\partial \lambda} - \frac{1}{r}\frac{\partial u}{\partial \varphi} + \frac{\tan \varphi}{r} u$$
|
||||
Der letzte Term folgt aus der Produkteregel!
|
||||
|
||||
\section{Matrixmethoden}
|
||||
\subsection{Equilibrium}
|
||||
Setze $\frac{df_i}{dn_j} = 0$ und löse Gleichungssystem
|
||||
|
||||
\subsection{Jacobimatrix}
|
||||
$$J = \left( \begin{array}{ccc}
|
||||
\frac{\partial f_1}{\partial n_1} \ldots \frac{\partial f_1}{\partial n_k} \\
|
||||
\vdots \ddots \vdots \\
|
||||
\frac{\partial f_k}{\partial n_1} \ldots \frac{\partial f_k}{\partial n_k}
|
||||
\end{array} \right)$$
|
||||
|
||||
Eigenwerte $\det(\textbf{J} - \lambda \textbf{I}) = 0$ wobei $\lambda \in \mathbb{C}, \lambda= x + iy$ \\
|
||||
\vspace{5pt}
|
||||
\begin{itemize}
|
||||
\item $x < 0$ für alle $\lambda_i$: stabil \\
|
||||
\item $x = 0$ für mindestens ein $\lambda_i$: kann neutral sein \\
|
||||
\item $x > 0$ für mindestens ein $\lambda_i$: instabil \\
|
||||
\item $y > 0$ für mindestens ein $\lambda_i$: Oszillation um Equilibrium \\
|
||||
\item $x$ ist die Konvergenz-/Divergenz-Rate zum/vom Equlibrium \\
|
||||
\item $1/y$ ist die Periode der Oszillation
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\subsection{SIR-Modell}
|
||||
SIR: Susceptible-Infected-Recovered \\
|
||||
|
||||
\subsubsection{Single-Strain SIR}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=.25\textwidth]{SIR.png}
|
||||
\caption{SIR-Modell}
|
||||
\label{fig:sir}
|
||||
\end{figure}
|
||||
|
||||
\begin{align*}
|
||||
\frac{dS}{dt} &= \Lambda - \delta_SS - \beta S I \\
|
||||
\frac{dI}{dt} &= \beta S I - \delta_I - rI \\
|
||||
\frac{dR}{dt} &= rI - \delta_R \\
|
||||
\end{align*}
|
||||
|
||||
$\Lambda$: Geburten- oder Immigrationsrate \\
|
||||
$\delta_S, \delta_I, \delta_R$: Sterberaten der jeweiligen (Teil-)populationen \\
|
||||
$r$: Erholungsrate von $I$ \\
|
||||
$\beta S I$: Mass-action Infektionsrate \\
|
||||
|
||||
\begin{itemize}
|
||||
\item Disease-free equilibrium:
|
||||
$$S_f = \Lambda / \delta_S, I_f=0, R_f=0$$
|
||||
\item Endemic equilibrium:
|
||||
$$S = \frac{\delta_1 + r}{\beta} , I_e=\frac{\Lambda}{\delta_1} - \frac{\delta_S}{\beta}, R_e = \frac{r}{\delta_R}(\frac{\Lambda}{\delta_1 + r} - \frac{\delta_S}{\beta})$$
|
||||
\end{itemize}
|
||||
|
||||
Für das Disease-free equilibrium ergeben sich die Eigenwerte aus
|
||||
$$(-\delta_S - \lambda)(\frac{\beta \Lambda}{\delta_S} - \delta_I - r - \lambda)(- \delta R - \lambda) = 0$$
|
||||
also
|
||||
\begin{itemize}
|
||||
\item $\lambda_1 = -\delta_S$
|
||||
\item $\lambda_2 = -\delta_R$
|
||||
\item $\lambda_3 = \frac{\beta \Lambda}{\delta_S} - \delta_I - r$
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection*{Reproduktionszahl $R_0$}
|
||||
$$R_0 = \frac{\beta \Lambda}{\delta_S(\delta_I + r)} = \frac{\beta S_f}{\delta_I + r}$$
|
||||
\begin{itemize}
|
||||
\item $R_0 > 1$: Ausbreitung
|
||||
\item $R_0 < 1$: Aussterben
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{Multi-Strain SIR}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=.25\textwidth]{SIR-2.png}
|
||||
\caption{SIR-Modell mit zwei verschiedenen Erregern}
|
||||
\label{fig:sir-2}
|
||||
\end{figure}
|
||||
|
||||
Invasion von Strain (2), wenn $R_0^{(1)} < R_0^{(2)}$
|
||||
|
||||
\section{Oszillation}
|
||||
\subsection{Reibungsfrei}
|
||||
$$\underbrace{\frac{D^2 \Delta z}{Dt^2}}_\text{Beschleunigung Luftpaket} + \underbrace{N^2 \Delta z}_\text{rücktreibende Kraft} = 0$$
|
||||
|
||||
wobei $N^2 = \frac{g}{\theta}\frac{\partial \theta}{\partial z}$ die Brunt-Väisälla-Frequenz
|
||||
\vspace{10pt} \\
|
||||
Mögliche Lösungen davon
|
||||
$$\Delta z(t) = A \sin (Nt)$$
|
||||
$$\Delta z(t) = B \cos (Nt)$$
|
||||
$$\Delta z(t) = C \sin (Nt) + D \cos (Nt)$$
|
||||
$$\Delta z(t) = E \sin (Nt + \delta)$$
|
||||
|
||||
oder in komplexer Schreibweise (Euler-Identität)
|
||||
$$\Delta z(t) = Ae^{iNt}$$
|
||||
|
||||
\subsection{Mit Reibung}
|
||||
$$\frac{D^2 \Delta z}{Dt^2} + N^2 \Delta z + k \frac{D \Delta z}{D t} = 0$$
|
||||
Lösung mit Ansatz $\Delta z(t) = A e^{i \omega t}$, führt zu
|
||||
$$\omega^2 - ik\omega - N^2 = 0$$
|
||||
also $\omega_{1,2} = \frac{1}{2}(ik \pm \sqrt{4N^2 - k^2})$ und somit
|
||||
$$\Delta z(t) = A \exp(-\frac{1}{2}kt)\exp(\frac{1}{2}i\sqrt{4N^2 - k^2}t)$$
|
||||
|
||||
\section{Wellengleichung}
|
||||
\subsection{1D-Welle}
|
||||
Für die Amplitude $\psi$
|
||||
$$\frac{\partial \psi}{\partial t^2} = c^2 \Delta \psi$$
|
||||
wobei $\Delta$ der Laplace-Operator ist. Somit im 1D-Fall
|
||||
$$\frac{\partial \psi}{\partial t^2} = c^2 \frac{\partial^2 \psi}{\partial x^2}$$
|
||||
Eine Lösung davon
|
||||
$$\psi(x,t) = A \sin(kx - \omega t) = A \sin \big[k(x-ct)\big]$$
|
||||
wobei $k$ die Wellenzahl und $\omega$ die Kreisfrequenz ist. Es gilt $c = \frac{\omega}{k}$, was gerade der Phasengeschwindigkeit entspricht. \\
|
||||
\vspace{5pt}
|
||||
Wir beobachten für $c > 0$ eine Verschiebung des Wellenmusters in positiver x-Richtung. \\
|
||||
\subsubsection{Kennzahlen}
|
||||
Phasengeschwindigkeit $v_p = c = \frac{\omega}{k}$ \\
|
||||
Wellenlänge $\lambda = \frac{2\pi}{k}$ \\
|
||||
Periode $\tau = \frac{2\pi}{\omega}$
|
||||
|
||||
\subsubsection{Wellenüberlagerung}
|
||||
Für die Gruppengeschwindigkeit zweier überlagerter Wellen mit $k_1 \neq k_2$ und $\omega_1 \neq \omega_2$ gilt
|
||||
$$v_g = \frac{d \omega}{d k} \approx \frac{\Delta \omega}{\Delta k}$$
|
||||
Dispersion tritt auf, falls $v_g \neq v_p$ (in der Praxis meist der Fall)
|
||||
|
||||
\subsection{2D-Welle}
|
||||
Für eine Linie konstanter Phase (Phasenlinie)
|
||||
$$kx + ly - \omega t = \mathrm{const.}$$
|
||||
Die Ausbreitung verläuft senkrecht auf diese Linien, was entlang dem Wellenvektor $\vec{h}$ entspricht. \\
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=.25\textwidth]{phasenlinien.png}
|
||||
\caption{Phasenlinien einer 2D-Welle}
|
||||
\label{fig:phasenlinien}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsubsection{Kennzahlen}
|
||||
Für die Wellenlängen gilt
|
||||
$$\lambda_x = 2\pi / k, \; \lambda_y = 2\pi / l$$
|
||||
bzw. die Wellenlänge entlang der Ausbreitung
|
||||
$$\lambda = \frac{2\pi}{\sqrt{k^2 + l^2}}$$
|
||||
Der Wellenvektor ist
|
||||
$$\vec{h} = (k,l)$$
|
||||
Die Phasengeschwindigkeit
|
||||
$$v_p = \frac{\omega}{\sqrt{k^2 + l^2}}$$
|
||||
|
||||
\subsection{Komplexer Wellenansatz}
|
||||
\begin{itemize}
|
||||
\item 1D: $A e^{i(kx - \omega t)}$
|
||||
\item 2D: $A e^{i(kx + ly - \omega t)}$
|
||||
\item 3D: $A e^{i(kx + ly + mz - \omega t)}$
|
||||
\end{itemize}
|
||||
|
||||
\section{Transportgleichung}
|
||||
Sei $\phi(x,y,z,t)$ ein physikalisches Feld mit Punkten $P(x,y,z)$ über die Zeit.
|
||||
|
||||
\subsection{Euler'sche Perspektive}
|
||||
Beobachtung am Punkt $P(x_0,y_0,z_0)$ wird gemessen:
|
||||
$$\phi^E(t) = \phi(x_0,y_0,z_0,t)$$
|
||||
Die zeitliche Änderung
|
||||
$$\dot{\phi}^E(t) = \frac{\partial}{\partial t} \phi(x_0,y_0,z_0,t)$$
|
||||
|
||||
\subsection{Lagrange'sche Perspektive}
|
||||
Messung wird "mitgetragen", entlang einer Trajektorie $\vec{x}(t)$
|
||||
$$\phi^L(t) = \phi(x(t),y(t),z(t),t)$$
|
||||
Die zeitliche Änderung (materielle Ableitung)
|
||||
$$\dot{\phi}^L(t) = \frac{D}{D t} \phi = \frac{d}{dt} \phi \bigg( x(t),y(t),z(t),t \bigg) = \frac{\partial \phi}{\partial t}+\vec{u} \cdot \nabla\phi$$
|
||||
Wobei $\vec{u}$ z.B. die Strömungsgeschwindigkeit ist
|
||||
|
||||
\subsection{Beliebiger Pfad}
|
||||
Als Beispiel bewegen wir uns in einem Flugzeug mit der Geschwindigkeit $\vec{v_F}$, dann gilt für die Veränderung
|
||||
$$\frac{\partial \phi}{\partial t}\bigg|_F = \frac{D \phi}{D t} + (\vec{v_F} - \vec{u}) \cdot \nabla \phi$$
|
||||
|
||||
\subsection{Quellen und Senken}
|
||||
Langrange'sche Perspektive
|
||||
$$\frac{D \phi}{D t} = s$$
|
||||
Analog für Euler
|
||||
$$\frac{\partial \phi}{\partial t} = s - \vec{u}\cdot\nabla\phi$$
|
||||
Man Beachte den Advektionsterm $\vec{u}\cdot\nabla\phi$!
|
||||
|
||||
\section{Folgen und Reihen}
|
||||
Folge: $\{a_n\} = a_1,a_2,...,a_n,a_{n+1},...$ \\
|
||||
Reihe: $\{s_n\} = s_1,s_2,...,s_n,s_{n+1},...$, wobei
|
||||
$$s_n = \sum_{k=1}^{k=n}a_k$$
|
||||
|
||||
\subsection{Bildungsgesetze}
|
||||
\textbf{Explizit}
|
||||
$a_n$ kann direkt berechnet werden, z.B. $a_n = n$
|
||||
|
||||
\textbf{Rekursiv}
|
||||
$a_n$ wird als Funktion von $a_{n-1}$ angegeben, z.B. $a_n = a_{n-1} + 1$
|
||||
|
||||
\subsection{Arithmetische Folge}
|
||||
|
||||
\subsection{Geometrische Folge}
|
||||
Verhältnis von zwei aufeinander folgenden Gliedern ist konstant
|
||||
$$\frac{a_{n+1}}{a_n}=q , \, a_n = a_1 q^{n-1}$$
|
||||
Daraus folgt die \textbf{geometrische Reihe}
|
||||
$$s_n = \sum_{k=1}^{k=n}a_1 q^{k-1} = a_1 \frac{1-q^n}{1-q}$$
|
||||
für $|q| < 1$
|
||||
$$\lim_{n\rightarrow\infty} s_n = a_1 \frac{1}{1-q}$$
|
||||
|
||||
\subsection{Fraktale Geometrie}
|
||||
\begin{itemize}
|
||||
\item $R$ = Anzahl Teillängen
|
||||
\item $P$ = Löcher/Poren
|
||||
\item $F$ = Anzahl Felder (1D: $R$, 2D: $R^2$, 3D: $R^3$) - P
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{Hausdorff-Dimension}
|
||||
Für Betrachtungen geometrischer Objekte mit Seitenlängen $N(R)$ gilt
|
||||
$$D = \frac{\log F}{\log R}$$
|
||||
Wenn $D$ nicht ganzzahlig $\rightarrow$ Fraktal
|
||||
|
||||
\subsubsection{Präfraktale}
|
||||
Als Präfraktale werden Fraktale einer bestimmter Ordnung verstanden. Ordnung 5 entspricht 5 Bildungsschritten. Ein ideales Fraktal besteht aus unendlich solcher Schritte. Ordnung 1 entspricht dem \textbf{Generator}.
|
||||
|
||||
\subsection{Beispiel}
|
||||
Wenden Sie die zugrunde liegende Vorschrift für einen Würfel der Grösse $L=360\mu m$ für unendlich viele Iterationen
|
||||
an unter der Annahme, dass «die Löcher» Körner sind. In jeder Iteration werden aus einem Würfel der Kantenlänge $l$ 27 kleine Würfel der Kantenlänge $l/3$ erzeugt; 7 werden davon weggenommen (als Loch dargestellt, das hier ein Korn sein soll) und 20 kleine
|
||||
Würfel bleiben übrig, die dann wieder verkleinert werden. \\
|
||||
\vspace{.2cm}
|
||||
Zeigen sie, dass die in jeder Iteration erzeugten Kornvolumen durch eine geometrische Folge
|
||||
dargestellt werden. \\
|
||||
\vspace{.2cm}
|
||||
Wir bilden die Folge der in einer Iteration $n$ erzeugten Kornvolumen, $V_n$ , in der Einheit von
|
||||
Kubikmikrometern um $^3$. In jeder Iteration $n$ wird folgendes Kornvolumen erzeugt:
|
||||
$$V_n = 20^{n-1} \cdot 7 \cdot \bigg(\frac{360}{3^n}\bigg)^3$$
|
||||
Das Verhältnis von zwei aufeinanderfolgenden Folgegliedern ist:
|
||||
$$\frac{V_{n+1}}{V_n} = \frac{20^{n} \cdot 7 \cdot \big(\frac{360}{3^n}\big)^3}{20^{n-1} \cdot 7 \cdot \big(\frac{360}{3^{n+1}}\big)^3} = \frac{20}{3^3}$$
|
||||
dieses Verhältnis ist offensichtlich von der Iterationszahl $n$ unabhängig und konstant, es handelt sich also um eine geometrische Folge. \\
|
||||
\vspace{.2cm}
|
||||
Die kumulierten Kornvolumen bilden dann eine geometrische Reihe $s_n$, mit der Formel
|
||||
$$s_n = a_1 \frac{1-q^n}{1-q}$$
|
||||
wobei $a_1 = V_1$ und $q=\frac{20}{27}$. Wir erhalten
|
||||
$$s_n = \sum_{i=1}^{i=n} V_i = V_1 \frac{1-(\frac{20}{27})^n}{1-\frac{20}{27}} = ... = 360^3 \bigg(1- \bigg(\frac{20}{27}\bigg)^n\bigg)$$
|
||||
Berechnen sie das in unendlich vielen Iterationen erzeugte Kornvolumen $s_\infty$
|
||||
$$s_\infty = V_1 \frac{1}{1-\frac{20}{27}} = 360^3 = 46.656\cdot 10^6 \mu m^3$$
|
||||
|
||||
\subsection{Anwendung in der Bodenphysik}
|
||||
\subsubsection{Wassersättigung}
|
||||
$$\Theta = \frac{\theta(h)}{\theta_s} = \bigg(\frac{h_b}{h}\bigg)^\lambda$$
|
||||
|
||||
\section{Taylor-Reihe}
|
||||
An der stelle $a$ einer Funtkion $f(x)$
|
||||
$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + ...$$
|
||||
|
||||
\section{Operatoren}
|
||||
$$\mathrm{div} \, \vec{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$
|
||||
|
||||
$$\mathrm{rot} \, \vec{u_{xy}} = \nabla \times \vec{u} = (\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y})$$
|
||||
$$\mathrm{rot} \, \vec{u_{xyz}} = \nabla \times \vec{u} = (\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}, \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}, \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y})$$
|
||||
|
||||
$$\nabla = \begin{pmatrix}
|
||||
\frac{\partial}{\partial x},
|
||||
\frac{\partial}{\partial y},
|
||||
\frac{\partial}{\partial z}
|
||||
\end{pmatrix}$$
|
||||
|
||||
$$\Delta \psi = \nabla^2 \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$$
|
||||
|
||||
\scriptsize
|
||||
|
||||
\section*{Copyleft}
|
||||
|
||||
\doclicenseImage \\
|
||||
Dieses Dokument ist unter (CC BY-SA 3.0) freigegeben \\
|
||||
\faGlobeEurope \kern 1em \url{https://n.ethz.ch/~jannisp} \\
|
||||
\faGit \kern 0.88em \url{https://git.thisfro.ch/thisfro/mathematik-v-zf} \\
|
||||
Jannis Portmann, FS21
|
||||
|
||||
\section*{Referenzen}
|
||||
\begin{enumerate}
|
||||
\item Skript zur Vorlesung
|
||||
\end{enumerate}
|
||||
|
||||
\section*{Bildquellen}
|
||||
\begin{itemize}
|
||||
\item Abb. \ref{fig:geo-coordinates}: E\^(nix) \& ttog, \url{https://de.wikipedia.org/wiki/Geographische_Koordinaten#/media/Datei:Geographic_coordinates_sphere.svg}
|
||||
\item Abb. \ref{fig:sir}, \ref{fig:sir-2}: Vorlesungsunterlagen
|
||||
\item Abb. \ref{fig:phasenlinien}: Jannis Portmann, basierend auf Vorlesungsunterlagen
|
||||
\end{itemize}
|
||||
|
||||
\end{multicols*}
|
||||
|
||||
\end{document}
|
|
@ -1,16 +1,19 @@
|
|||
# Mathematik V ZF
|
||||
[![CC BY-SA 3.0][cc-by-sa-shield]][cc-by-sa]
|
||||
|
||||
Zusammenfassung für die Vorlesung *Mathematik V* bei M. A. Sprenger im FS21.
|
||||
Zusammenfassung für die Vorlesung [*Mathematik V*](http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?lerneinheitId=150657&semkez=2021S&ansicht=LEHRVERANSTALTUNGEN&lang=de) bei M. A. Sprenger und weitere Dozenten im FS21.
|
||||
|
||||
## Kompiliertes `.pdf`
|
||||
Findest du hier: https://n.ethz.ch/~jannisp/download/Mathematik-V/
|
||||
Findest du hier: https://n.ethz.ch/~jannisp/download/Mathematik-V/
|
||||
|
||||
Vorschau-PDF werden automatisch unter https://server.thisfro.ch/download/latex-previews/ veröffentlicht.
|
||||
:warning: Achtung: Diese sind meist noch nicht fertig!
|
||||
|
||||
## Änderungen
|
||||
Falls du irgendwelche Fehler findest oder Sache ergänzen willst, darfst du die gerne selbst korrigieren/einfügen und einen Pull request öffnen. Ansonsten kontaktiere mich direkt ([jannisp](jannispmailto:jannisp@student.ethz.ch)).
|
||||
|
||||
## Copyleft
|
||||
Ausser den Grafiken unterliegte die Zusammenfassung der [Creative Commons Attribution-ShareAlike 3.0 International License][cc-by-sa].
|
||||
Ausser den Grafiken unterliegt die Zusammenfassung der [Creative Commons Attribution-ShareAlike 3.0 International License][cc-by-sa].
|
||||
|
||||
[![CC BY-SA 3.0][cc-by-sa-image]][cc-by-sa]
|
||||
|
||||
|
|
|
@ -1,184 +0,0 @@
|
|||
\documentclass[8pt,landscape]{article}
|
||||
\usepackage{multicol}
|
||||
\usepackage{calc}
|
||||
\usepackage{bookmark}
|
||||
\usepackage{ifthen}
|
||||
\usepackage[a4paper, landscape]{geometry}
|
||||
\usepackage{hyperref}
|
||||
% \usepackage{ccicons}
|
||||
\usepackage{amsmath, amsfonts, amssymb, amsthm}
|
||||
\usepackage{listings}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{fontawesome5}
|
||||
\usepackage{xcolor}
|
||||
\usepackage{float}
|
||||
\usepackage{apacite}
|
||||
\usepackage[
|
||||
type={CC},
|
||||
modifier={by-sa},
|
||||
version={3.0}
|
||||
]{doclicense}
|
||||
|
||||
\graphicspath{{./img/}}
|
||||
|
||||
\definecolor{codegreen}{rgb}{0,0.6,0}
|
||||
\definecolor{codegray}{rgb}{0.5,0.5,0.5}
|
||||
\definecolor{codepurple}{rgb}{0.58,0,0.82}
|
||||
\definecolor{backcolour}{rgb}{0.95,0.95,0.92}
|
||||
|
||||
\lstdefinestyle{mystyle}{
|
||||
backgroundcolor=\color{backcolour},
|
||||
commentstyle=\color{codegreen},
|
||||
keywordstyle=\color{magenta},
|
||||
numberstyle=\tiny\color{codegray},
|
||||
stringstyle=\color{codepurple},
|
||||
basicstyle=\ttfamily\footnotesize,
|
||||
breakatwhitespace=false,
|
||||
breaklines=true,
|
||||
captionpos=b,
|
||||
keepspaces=true,
|
||||
numbers=left,
|
||||
numbersep=5pt,
|
||||
showspaces=false,
|
||||
showstringspaces=false,
|
||||
showtabs=false,
|
||||
tabsize=2
|
||||
}
|
||||
|
||||
\lstset{style=mystyle}
|
||||
|
||||
% To make this come out properly in landscape mode, do one of the following
|
||||
% 1.
|
||||
% pdflatex latexsheet.tex
|
||||
%
|
||||
% 2.
|
||||
% latex latexsheet.tex
|
||||
% dvips -P pdf -t landscape latexsheet.dvi
|
||||
% ps2pdf latexsheet.ps
|
||||
|
||||
|
||||
% If you're reading this, be prepared for confusion. Making this was
|
||||
% a learning experience for me, and it shows. Much of the placement
|
||||
% was hacked in; if you make it better, let me know...
|
||||
|
||||
|
||||
% 2008-04
|
||||
% Changed page margin code to use the geometry package. Also added code for
|
||||
% conditional page margins, depending on paper size. Thanks to Uwe Ziegenhagen
|
||||
% for the suggestions.
|
||||
|
||||
% 2006-08
|
||||
% Made changes based on suggestions from Gene Cooperman. <gene at ccs.neu.edu>
|
||||
|
||||
|
||||
% To Do:
|
||||
% \listoffigures \listoftables
|
||||
% \setcounter{secnumdepth}{0}
|
||||
|
||||
|
||||
% This sets page margins to .5 inch if using letter paper, and to 1cm
|
||||
% if using A4 paper. (This probably isn't strictly necessary.)
|
||||
% If using another size paper, use default 1cm margins.
|
||||
\ifthenelse{\lengthtest { \paperwidth = 11in}}
|
||||
{ \geometry{top=.5in,left=.5in,right=.5in,bottom=.5in} }
|
||||
{\ifthenelse{ \lengthtest{ \paperwidth = 297mm}}
|
||||
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
|
||||
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
|
||||
}
|
||||
|
||||
% Turn off header and footer
|
||||
\pagestyle{empty}
|
||||
|
||||
|
||||
% Redefine section commands to use less space
|
||||
\makeatletter
|
||||
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
|
||||
{-1ex plus -.5ex minus -.2ex}%
|
||||
{0.5ex plus .2ex}%x
|
||||
{\normalfont\large\bfseries}}
|
||||
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
|
||||
{-1explus -.5ex minus -.2ex}%
|
||||
{0.5ex plus .2ex}%
|
||||
{\normalfont\normalsize\bfseries}}
|
||||
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
|
||||
{-1ex plus -.5ex minus -.2ex}%
|
||||
{1ex plus .2ex}%
|
||||
{\normalfont\small\bfseries}}
|
||||
|
||||
|
||||
\makeatother
|
||||
|
||||
% Define BibTeX command
|
||||
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
|
||||
T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
|
||||
|
||||
% Don't print section numbers
|
||||
% \setcounter{secnumdepth}{0}
|
||||
|
||||
|
||||
\setlength{\parindent}{0pt}
|
||||
\setlength{\parskip}{0pt plus 0.5ex}
|
||||
|
||||
% -----------------------------------------------------------------------
|
||||
|
||||
\begin{document}
|
||||
|
||||
\raggedright
|
||||
\footnotesize
|
||||
\begin{multicols*}{4}
|
||||
|
||||
|
||||
% multicol parameters
|
||||
% These lengths are set only within the two main columns
|
||||
%\setlength{\columnseprule}{0.25pt}
|
||||
\setlength{\premulticols}{1pt}
|
||||
\setlength{\postmulticols}{1pt}
|
||||
\setlength{\multicolsep}{1pt}
|
||||
\setlength{\columnsep}{2pt}
|
||||
|
||||
\begin{center}
|
||||
\Large{ZF Mathematik V} \\
|
||||
\small{701-0106-00L Mathematik V, bei M. A. Sprenger} \\
|
||||
\small{Jannis Portmann \the\year}
|
||||
\end{center}
|
||||
|
||||
\begin{center}
|
||||
\rule{\linewidth}{0.25pt}
|
||||
\end{center}
|
||||
|
||||
\section{Gewöhnliche Differentialgleichungen}
|
||||
\subsection{1. Ordnung}
|
||||
$$\frac{dH}{dt} = v_0 - \frac{H(t)}{\tau}$$
|
||||
|
||||
Eine Lösung davon
|
||||
$$H(t) = (H_0 - v_0\tau)^{\frac{-t}{\tau}} + v_0 \tau$$
|
||||
|
||||
\section{Taylor-Reihe}
|
||||
|
||||
\section{Operators}
|
||||
$$\mathrm{rot} \ u = \nabla \times \vec{u}$$
|
||||
|
||||
$$\nabla = \begin{pmatrix}
|
||||
\frac{\partial}{\partial x},
|
||||
\frac{\partial}{\partial y},
|
||||
\frac{\partial}{\partial z}
|
||||
\end{pmatrix}$$
|
||||
|
||||
\scriptsize
|
||||
|
||||
\section{Copyleft}
|
||||
|
||||
\doclicenseImage \\
|
||||
Dieses Dokument ist unter (CC BY-SA 3.0) freigegeben \\
|
||||
\faGlobeEurope \kern 1em \url{https://n.ethz.ch/~jannisp} \\
|
||||
\faGit \kern 0.88em \url{https://git.thisfro.ch/thisfro/wettersysteme-zf} \\
|
||||
Jannis Portmann, HS20
|
||||
|
||||
\section{Referenzen}
|
||||
\begin{enumerate}
|
||||
\item Skript zur Vorlesung
|
||||
\end{enumerate}
|
||||
|
||||
\end{multicols*}
|
||||
|
||||
\end{document}
|
BIN
img/1024px-Geographic_coordinates_sphere.png
Normal file
BIN
img/1024px-Geographic_coordinates_sphere.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 126 KiB |
BIN
img/SIR-2.png
Normal file
BIN
img/SIR-2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 112 KiB |
BIN
img/SIR.png
Normal file
BIN
img/SIR.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 59 KiB |
BIN
img/phasenlinien.png
Normal file
BIN
img/phasenlinien.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 126 KiB |
Loading…
Reference in a new issue