Expand SIR further
This commit is contained in:
		
							parent
							
								
									29c8f07229
								
							
						
					
					
						commit
						8e0b941d59
					
				
					 2 changed files with 30 additions and 4 deletions
				
			
		|  | @ -138,7 +138,7 @@ | |||
| 
 | ||||
| \begin{center} | ||||
|      \Large{ZF Mathematik V} \\ | ||||
|     \small{701-0106-00L Mathematik V, bei M. A. Sprenger} \\ | ||||
|     \small{701-0106-00L Mathematik V} \\ | ||||
|     \small{Jannis Portmann \the\year} \\ | ||||
|     {\ccbysa} | ||||
| \rule{\linewidth}{0.25pt} | ||||
|  | @ -222,9 +222,10 @@ Eigenwerte $\det(\textbf{J} - \lambda \textbf{I}) = 0$ wobei $\lambda \in \mathb | |||
| 
 | ||||
| SIR: Susceptible-Infected-Recovered \\ | ||||
| 
 | ||||
| \subsubsection{Single-Strain SIR} | ||||
| \begin{figure}[H] | ||||
|     \centering | ||||
|     \includegraphics[width=.3\textwidth]{SIR.png} | ||||
|     \includegraphics[width=.25\textwidth]{SIR.png} | ||||
|     \caption{SIR-Modell} | ||||
|     \label{fig:sir} | ||||
| \end{figure} | ||||
|  | @ -245,9 +246,34 @@ $\beta S I$: Mass-action Infektionsrate \\ | |||
|         $$S_f = \Lambda / \delta_S, I_f=0, R_f=0$$ | ||||
|     \item Endemic equilibrium: | ||||
|         $$S = \frac{\delta_1 + r}{\beta} , I_e=\frac{\Lambda}{\delta_1} - \frac{\delta_S}{\beta}, R_e = \frac{r}{\delta_R}(\frac{\Lambda}{\delta_1 + r} - \frac{\delta_S}{\beta})$$ | ||||
|     \item  | ||||
| \end{itemize} | ||||
| 
 | ||||
| Für das Disease-free equilibrium ergeben sich die Eigenwerte aus | ||||
| $$(-\delta_S - \lambda)(\frac{\beta \Lambda}{\delta_S} - \delta_I - r - \lambda)(- \delta R - \lambda) = 0$$ | ||||
| also | ||||
| \begin{itemize} | ||||
|     \item $\lambda_1 = -\delta_S$ | ||||
|     \item $\lambda_2 = -\delta_R$ | ||||
|     \item $\lambda_3 = \frac{\beta \Lambda}{\delta_S} - \delta_I - r$ | ||||
| \end{itemize} | ||||
| 
 | ||||
| \subsubsection*{Reproduktionszahl $R_0$} | ||||
| $$R_0 = \frac{\beta \Lambda}{\delta_S(\delta_I + r)} = \frac{\beta S_f}{\delta_I + r}$$ | ||||
| \begin{itemize} | ||||
|     \item $R_0 > 1$: Ausbreitung | ||||
|     \item $R_0 < 1$: Aussterben | ||||
| \end{itemize} | ||||
| 
 | ||||
| \subsubsection{Multi-Strain SIR} | ||||
| \begin{figure}[H] | ||||
|     \centering | ||||
|     \includegraphics[width=.25\textwidth]{SIR-2.png} | ||||
|     \caption{SIR-Modell mit zwei verschiedenen Erregern} | ||||
|     \label{fig:sir-2} | ||||
| \end{figure} | ||||
| 
 | ||||
| Invasion von Strain (2), wenn $R_0^{(1)} < R_0^{(2)}$ | ||||
| 
 | ||||
| \section{Taylor-Reihe} | ||||
| An der stelle $a$ einer Funtkion $f(x)$ | ||||
| $$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + ...$$ | ||||
|  | @ -282,7 +308,7 @@ Jannis Portmann, FS21 | |||
| \section*{Bildquellen} | ||||
| \begin{itemize} | ||||
|   \item Abb. \ref{fig:geo-coordinates}: E\^(nix) \& ttog, \url{https://de.wikipedia.org/wiki/Geographische_Koordinaten#/media/Datei:Geographic_coordinates_sphere.svg} | ||||
|   \item Abb. \ref{fig:sir}: Vorlesungsunterlagen | ||||
|   \item Abb. \ref{fig:sir}, \ref{fig:sir-2}: Vorlesungsunterlagen | ||||
| \end{itemize} | ||||
| 
 | ||||
| \end{multicols*} | ||||
|  |  | |||
							
								
								
									
										
											BIN
										
									
								
								img/SIR-2.png
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								img/SIR-2.png
									
										
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 112 KiB | 
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue