Add Oszillation chapter

This commit is contained in:
jannisp 2021-07-26 11:02:22 +02:00
parent 8e0b941d59
commit f7c93c5e59

View file

@ -274,6 +274,28 @@ $$R_0 = \frac{\beta \Lambda}{\delta_S(\delta_I + r)} = \frac{\beta S_f}{\delta_I
Invasion von Strain (2), wenn $R_0^{(1)} < R_0^{(2)}$
\section{Oszillation}
\subsection{Reibungsfrei}
$$\underbrace{\frac{D^2 \Delta z}{Dt^2}}_\text{Beschleunigung Luftpaket} + \underbrace{N^2 \Delta z}_\text{rücktreibende Kraft} = 0$$
wobei $N^2 = \frac{g}{\theta}\frac{\partial \theta}{\partial z}$ die Brunt-Väisälla-Frequenz
\vspace{10px} \\
Mögliche Lösungen davon
$$\Delta z(t) = A \sin (Nt)$$
$$\Delta z(t) = B \cos (Nt)$$
$$\Delta z(t) = C \sin (Nt) + D \cos (Nt)$$
$$\Delta z(t) = E \sin (Nt + \delta)$$
oder in komplexer Schreibweise (Euler-Identität)
$$\Delta z(t) = Ae^{iNt}$$
\subsection{Mit Reibung}
$$\frac{D^2 \Delta z}{Dt^2} + N^2 \Delta z + k \frac{D \Delta z}{D t} = 0$$
Lösung mit Ansatz $\Delta z(t) = A e^{i \omega t}$, führt zu
$$\omega^2 - ik\omega - N^2 = 0$$
also $\omega_{1,2} = \frac{1}{2}(ik \pm \sqrt{4N^2 - k^2})$ und somit
$$\Delta z(t) = A \exp(-\frac{1}{2}kt)\exp(\frac{1}{2}i\sqrt{4N^2 - k^2}t)$$
\section{Taylor-Reihe}
An der stelle $a$ einer Funtkion $f(x)$
$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + ...$$