Add SIR chapter
This commit is contained in:
parent
38eb7d8b91
commit
42f30ce2a5
1 changed files with 15 additions and 0 deletions
|
@ -218,6 +218,21 @@ Eigenwerte $\det(\textbf{J} - \lambda \textbf{I}) = 0$ wobei $\lambda \in \mathb
|
|||
\end{itemize}
|
||||
|
||||
|
||||
\subsection{SIR-Modell}
|
||||
SIR: Susceptible-Infected-Recovered \\
|
||||
\vspace{10px}
|
||||
$\Lambda$: Geburten- oder Immigrationsrate \\
|
||||
$\delta_S, \delta_I, \delta_R$: Sterberaten der jeweiligen (Teil-)populationen
|
||||
$r$: Erholungsrate von $I$
|
||||
$\beta S I$: Mass-action Infektionsrate
|
||||
|
||||
\begin{itemize}
|
||||
\item Disease-free equilibrium:
|
||||
$$S_f = \Lambda / \delta_S, I_f=0, R_f=0$$
|
||||
\item Endemic equilibrium:
|
||||
$$S = \frac{\delta_1 + r}{\beta} , I_e=\frac{\Lambda}{\delta_1} - \frac{\delta_S}{\beta}, R_e = \frac{r}{\delta_R}(\frac{\Lambda}{\delta_1 + r} - \frac{\delta_S}{\beta})$$
|
||||
\item
|
||||
\end{itemize}
|
||||
|
||||
\section{Taylor-Reihe}
|
||||
An der stelle $a$ einer Funtkion $f(x)$
|
||||
|
|
Loading…
Reference in a new issue