Compare commits

..

4 commits

Author SHA1 Message Date
8e0b941d59 Expand SIR further 2021-07-24 12:31:26 +02:00
29c8f07229 Expand SIR 2021-07-23 12:18:47 +02:00
cb46456324 Add .DS_Store to .gitignore 2021-07-23 12:17:52 +02:00
dcfcdf2b96 Rename to german 2021-07-23 11:36:39 +02:00
4 changed files with 50 additions and 7 deletions

2
.gitignore vendored
View file

@ -297,3 +297,5 @@ TSWLatexianTemp*
*.glstex
# End of https://www.toptal.com/developers/gitignore/api/latex
.DS_Store

View file

@ -138,7 +138,7 @@
\begin{center}
\Large{ZF Mathematik V} \\
\small{701-0106-00L Mathematik V, bei M. A. Sprenger} \\
\small{701-0106-00L Mathematik V} \\
\small{Jannis Portmann \the\year} \\
{\ccbysa}
\rule{\linewidth}{0.25pt}
@ -219,26 +219,66 @@ Eigenwerte $\det(\textbf{J} - \lambda \textbf{I}) = 0$ wobei $\lambda \in \mathb
\subsection{SIR-Modell}
SIR: Susceptible-Infected-Recovered \\
\vspace{10px}
\subsubsection{Single-Strain SIR}
\begin{figure}[H]
\centering
\includegraphics[width=.25\textwidth]{SIR.png}
\caption{SIR-Modell}
\label{fig:sir}
\end{figure}
\begin{align*}
\frac{dS}{dt} &= \Lambda - \delta_SS - \beta S I \\
\frac{dI}{dt} &= \beta S I - \delta_I - rI \\
\frac{dR}{dt} &= rI - \delta_R \\
\end{align*}
$\Lambda$: Geburten- oder Immigrationsrate \\
$\delta_S, \delta_I, \delta_R$: Sterberaten der jeweiligen (Teil-)populationen
$r$: Erholungsrate von $I$
$\beta S I$: Mass-action Infektionsrate
$\delta_S, \delta_I, \delta_R$: Sterberaten der jeweiligen (Teil-)populationen \\
$r$: Erholungsrate von $I$ \\
$\beta S I$: Mass-action Infektionsrate \\
\begin{itemize}
\item Disease-free equilibrium:
$$S_f = \Lambda / \delta_S, I_f=0, R_f=0$$
\item Endemic equilibrium:
$$S = \frac{\delta_1 + r}{\beta} , I_e=\frac{\Lambda}{\delta_1} - \frac{\delta_S}{\beta}, R_e = \frac{r}{\delta_R}(\frac{\Lambda}{\delta_1 + r} - \frac{\delta_S}{\beta})$$
\item
\end{itemize}
Für das Disease-free equilibrium ergeben sich die Eigenwerte aus
$$(-\delta_S - \lambda)(\frac{\beta \Lambda}{\delta_S} - \delta_I - r - \lambda)(- \delta R - \lambda) = 0$$
also
\begin{itemize}
\item $\lambda_1 = -\delta_S$
\item $\lambda_2 = -\delta_R$
\item $\lambda_3 = \frac{\beta \Lambda}{\delta_S} - \delta_I - r$
\end{itemize}
\subsubsection*{Reproduktionszahl $R_0$}
$$R_0 = \frac{\beta \Lambda}{\delta_S(\delta_I + r)} = \frac{\beta S_f}{\delta_I + r}$$
\begin{itemize}
\item $R_0 > 1$: Ausbreitung
\item $R_0 < 1$: Aussterben
\end{itemize}
\subsubsection{Multi-Strain SIR}
\begin{figure}[H]
\centering
\includegraphics[width=.25\textwidth]{SIR-2.png}
\caption{SIR-Modell mit zwei verschiedenen Erregern}
\label{fig:sir-2}
\end{figure}
Invasion von Strain (2), wenn $R_0^{(1)} < R_0^{(2)}$
\section{Taylor-Reihe}
An der stelle $a$ einer Funtkion $f(x)$
$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + ...$$
\section{Operators}
\section{Operatoren}
$$\mathrm{div} \, \vec{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$
$$\mathrm{rot} \, \vec{u_{xy}} = \nabla \times \vec{u} = (\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y})$$
@ -268,6 +308,7 @@ Jannis Portmann, FS21
\section*{Bildquellen}
\begin{itemize}
\item Abb. \ref{fig:geo-coordinates}: E\^(nix) \& ttog, \url{https://de.wikipedia.org/wiki/Geographische_Koordinaten#/media/Datei:Geographic_coordinates_sphere.svg}
\item Abb. \ref{fig:sir}, \ref{fig:sir-2}: Vorlesungsunterlagen
\end{itemize}
\end{multicols*}

BIN
img/SIR-2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

BIN
img/SIR.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB