Compare commits
	
		
			No commits in common. "cd314d462d39fc4bfbed76babf9ecfae339d0fe2" and "19c68930f70105abf0007ae4a310835f451497ad" have entirely different histories.
		
	
	
		
			cd314d462d
			...
			19c68930f7
		
	
		
							
								
								
									
										21
									
								
								README.md
									
										
									
									
									
								
							
							
						
						| 
						 | 
					@ -1,21 +1,2 @@
 | 
				
			||||||
# Wettersysteme ZF
 | 
					# wettersysteme-zf
 | 
				
			||||||
[![CC BY-SA 3.0][cc-by-sa-shield]][cc-by-sa]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Zusammenfassung für die Vorlesung *Wettersysteme* bei Dr. Michael Armand Sprenger und  Dr. Franziska Scholder-Aemisegger
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
## Kompiliertes `.pdf`
 | 
					 | 
				
			||||||
Findest du hier: https://n.ethz.ch/~jannisp/download/Wettersysteme/ 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
## Änderungen
 | 
					 | 
				
			||||||
Falls du irgendwelche Fehler findest oder Sache ergänzen willst, darfst du die gerne selbst korrigieren/einfügen und einen Pull request öffnen. Ansonsten kontaktiere mich direkt ([jannisp](jannispmailto:jannisp@student.ethz.ch)).
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
## Copyleft
 | 
					 | 
				
			||||||
This work is licensed under a [Creative Commons Attribution-ShareAlike 3.0
 | 
					 | 
				
			||||||
International License][cc-by-sa].
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
[![CC BY-SA 3.0][cc-by-sa-image]][cc-by-sa]
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
[cc-by-sa]: http://creativecommons.org/licenses/by-sa/3.0/
 | 
					 | 
				
			||||||
[cc-by-sa-image]: https://licensebuttons.net/l/by-sa/3.0/88x31.png
 | 
					 | 
				
			||||||
[cc-by-sa-shield]: https://img.shields.io/badge/License-CC%20BY--SA%203.0-lightgrey.svg
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,473 +0,0 @@
 | 
				
			||||||
\documentclass[8pt,landscape]{extarticle}
 | 
					 | 
				
			||||||
\usepackage{multicol}
 | 
					 | 
				
			||||||
\usepackage{calc}
 | 
					 | 
				
			||||||
\usepackage{bookmark}
 | 
					 | 
				
			||||||
\usepackage{ifthen}
 | 
					 | 
				
			||||||
\usepackage[a4paper, landscape]{geometry}
 | 
					 | 
				
			||||||
\usepackage{hyperref}
 | 
					 | 
				
			||||||
% \usepackage{ccicons}
 | 
					 | 
				
			||||||
\usepackage{amsmath, amsfonts, amssymb, amsthm}
 | 
					 | 
				
			||||||
\usepackage{listings}
 | 
					 | 
				
			||||||
\usepackage{graphicx}
 | 
					 | 
				
			||||||
\usepackage{fontawesome5}
 | 
					 | 
				
			||||||
\usepackage{xcolor}
 | 
					 | 
				
			||||||
\usepackage{float}
 | 
					 | 
				
			||||||
\usepackage[
 | 
					 | 
				
			||||||
    type={CC},
 | 
					 | 
				
			||||||
    modifier={by-sa},
 | 
					 | 
				
			||||||
    version={3.0}
 | 
					 | 
				
			||||||
]{doclicense}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\graphicspath{{./img/}} 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\definecolor{codegreen}{rgb}{0,0.6,0}
 | 
					 | 
				
			||||||
\definecolor{codegray}{rgb}{0.5,0.5,0.5}
 | 
					 | 
				
			||||||
\definecolor{codepurple}{rgb}{0.58,0,0.82}
 | 
					 | 
				
			||||||
\definecolor{backcolour}{rgb}{0.95,0.95,0.92}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\lstdefinestyle{mystyle}{
 | 
					 | 
				
			||||||
    backgroundcolor=\color{backcolour},
 | 
					 | 
				
			||||||
    commentstyle=\color{codegreen},
 | 
					 | 
				
			||||||
    keywordstyle=\color{magenta},
 | 
					 | 
				
			||||||
    numberstyle=\tiny\color{codegray},
 | 
					 | 
				
			||||||
    stringstyle=\color{codepurple},
 | 
					 | 
				
			||||||
    basicstyle=\ttfamily\footnotesize,
 | 
					 | 
				
			||||||
    breakatwhitespace=false,
 | 
					 | 
				
			||||||
    breaklines=true,
 | 
					 | 
				
			||||||
    captionpos=b,
 | 
					 | 
				
			||||||
    keepspaces=true,
 | 
					 | 
				
			||||||
    numbers=left,
 | 
					 | 
				
			||||||
    numbersep=5pt,
 | 
					 | 
				
			||||||
    showspaces=false,
 | 
					 | 
				
			||||||
    showstringspaces=false,
 | 
					 | 
				
			||||||
    showtabs=false,
 | 
					 | 
				
			||||||
    tabsize=2
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\lstset{style=mystyle}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
% To make this come out properly in landscape mode, do one of the following
 | 
					 | 
				
			||||||
% 1.
 | 
					 | 
				
			||||||
%  pdflatex latexsheet.tex
 | 
					 | 
				
			||||||
%
 | 
					 | 
				
			||||||
% 2.
 | 
					 | 
				
			||||||
%  latex latexsheet.tex
 | 
					 | 
				
			||||||
%  dvips -P pdf  -t landscape latexsheet.dvi
 | 
					 | 
				
			||||||
%  ps2pdf latexsheet.ps
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
% If you're reading this, be prepared for confusion.  Making this was
 | 
					 | 
				
			||||||
% a learning experience for me, and it shows.  Much of the placement
 | 
					 | 
				
			||||||
% was hacked in; if you make it better, let me know...
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
% 2008-04
 | 
					 | 
				
			||||||
% Changed page margin code to use the geometry package. Also added code for
 | 
					 | 
				
			||||||
% conditional page margins, depending on paper size. Thanks to Uwe Ziegenhagen
 | 
					 | 
				
			||||||
% for the suggestions.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
% 2006-08
 | 
					 | 
				
			||||||
% Made changes based on suggestions from Gene Cooperman. <gene at ccs.neu.edu>
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
% To Do:
 | 
					 | 
				
			||||||
% \listoffigures \listoftables
 | 
					 | 
				
			||||||
% \setcounter{secnumdepth}{0}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
% This sets page margins to .5 inch if using letter paper, and to 1cm
 | 
					 | 
				
			||||||
% if using A4 paper. (This probably isn't strictly necessary.)
 | 
					 | 
				
			||||||
% If using another size paper, use default 1cm margins.
 | 
					 | 
				
			||||||
\ifthenelse{\lengthtest { \paperwidth = 11in}}
 | 
					 | 
				
			||||||
	{ \geometry{top=.5in,left=.5in,right=.5in,bottom=.5in} }
 | 
					 | 
				
			||||||
	{\ifthenelse{ \lengthtest{ \paperwidth = 297mm}}
 | 
					 | 
				
			||||||
		{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
 | 
					 | 
				
			||||||
		{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
% Turn off header and footer
 | 
					 | 
				
			||||||
\pagestyle{empty}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
% Redefine section commands to use less space
 | 
					 | 
				
			||||||
\makeatletter
 | 
					 | 
				
			||||||
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
 | 
					 | 
				
			||||||
                                {-1ex plus -.5ex minus -.2ex}%
 | 
					 | 
				
			||||||
                                {0.5ex plus .2ex}%x
 | 
					 | 
				
			||||||
                                {\normalfont\large\bfseries}}
 | 
					 | 
				
			||||||
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
 | 
					 | 
				
			||||||
                                {-1explus -.5ex minus -.2ex}%
 | 
					 | 
				
			||||||
                                {0.5ex plus .2ex}%
 | 
					 | 
				
			||||||
                                {\normalfont\normalsize\bfseries}}
 | 
					 | 
				
			||||||
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
 | 
					 | 
				
			||||||
                                {-1ex plus -.5ex minus -.2ex}%
 | 
					 | 
				
			||||||
                                {1ex plus .2ex}%
 | 
					 | 
				
			||||||
                                {\normalfont\small\bfseries}}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\makeatother
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
% Define BibTeX command
 | 
					 | 
				
			||||||
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
 | 
					 | 
				
			||||||
    T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
% Don't print section numbers
 | 
					 | 
				
			||||||
% \setcounter{secnumdepth}{0}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\setlength{\parindent}{0pt}
 | 
					 | 
				
			||||||
\setlength{\parskip}{0pt plus 0.5ex}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
% -----------------------------------------------------------------------
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\begin{document}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\raggedright
 | 
					 | 
				
			||||||
\footnotesize
 | 
					 | 
				
			||||||
\begin{multicols*}{4}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
% multicol parameters
 | 
					 | 
				
			||||||
% These lengths are set only within the two main columns
 | 
					 | 
				
			||||||
%\setlength{\columnseprule}{0.25pt}
 | 
					 | 
				
			||||||
\setlength{\premulticols}{1pt}
 | 
					 | 
				
			||||||
\setlength{\postmulticols}{1pt}
 | 
					 | 
				
			||||||
\setlength{\multicolsep}{1pt}
 | 
					 | 
				
			||||||
\setlength{\columnsep}{2pt}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\begin{center}
 | 
					 | 
				
			||||||
     \Large{ZF Wettersysteme asd} \\
 | 
					 | 
				
			||||||
		 \small{701-0473-00L Wettersysteme, bei M. Sprenger \& F. Aemisegger} \\
 | 
					 | 
				
			||||||
		 \small{Jannis Portmann \the\year}
 | 
					 | 
				
			||||||
\end{center}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\begin{center}
 | 
					 | 
				
			||||||
	\rule{\linewidth}{0.25pt}
 | 
					 | 
				
			||||||
\end{center}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\section{Thermodynamik}
 | 
					 | 
				
			||||||
\subsection{Potentielle Temperatur}
 | 
					 | 
				
			||||||
$$\theta = T \bigg(\frac{p_o}{p} \bigg)^\kappa$$
 | 
					 | 
				
			||||||
Bsp.
 | 
					 | 
				
			||||||
$$\frac{T_{Boden}}{T_{LCL}} = \bigg( \frac{p_{Boden}}{p_{LCL}} \bigg)^\kappa$$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Hydrostatische Grundgleichung}
 | 
					 | 
				
			||||||
$$\frac{dp}{dz} = -\rho g$$
 | 
					 | 
				
			||||||
integriert
 | 
					 | 
				
			||||||
$$h = \frac{RT}{g}\ln \bigg(\frac{p_o}{p} \bigg)$$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Stabilität}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\begin{figure}[H]
 | 
					 | 
				
			||||||
    \centering
 | 
					 | 
				
			||||||
    \includegraphics[width=3.5cm]{stability.png}
 | 
					 | 
				
			||||||
    \caption{Hydrostatische Stabilität}
 | 
					 | 
				
			||||||
    \label{fig:stability}
 | 
					 | 
				
			||||||
\end{figure}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsubsection{Brunt-Väisälla Frequenz}
 | 
					 | 
				
			||||||
$$N^2 = \frac{g}{\theta}\frac{\partial \theta}{\partial z}$$
 | 
					 | 
				
			||||||
$N^2 > 0: stabil$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\section{Winde und Fronten}
 | 
					 | 
				
			||||||
\subsection{Geostrophischer Wind}
 | 
					 | 
				
			||||||
$$fu_G = -g \frac{\partial \phi}{\partial y}$$
 | 
					 | 
				
			||||||
$$fv_G = g \frac{\partial \phi}{\partial x}$$
 | 
					 | 
				
			||||||
wobei $f$ der Coriolis-Parameter ist.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Geostrophische Näherung ist gültig, wenn der Rossby-Parameter $<1$.
 | 
					 | 
				
			||||||
$$Ro = \frac{U}{fL}<1$$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Thermischer Wind}
 | 
					 | 
				
			||||||
$$\frac{\partial v_g}{\partial z} = \frac{g}{fT} \vec{k} \times \nabla_hT$$
 | 
					 | 
				
			||||||
integriert
 | 
					 | 
				
			||||||
$$\vec{v_T}=\vec{v_g}(p_1)-\vec{v_g}(p_2) = \frac{R}{f}\ln \bigg(\frac{p_1}{p_2} \bigg)\vec{k} \times \nabla_h T$$
 | 
					 | 
				
			||||||
wobei
 | 
					 | 
				
			||||||
$\vec{k} \times \nabla_h T = \frac{\Delta T}{\Delta y}$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\begin{figure}[H]
 | 
					 | 
				
			||||||
    \centering
 | 
					 | 
				
			||||||
    \includegraphics[width=5cm]{thermischer_wind.png}
 | 
					 | 
				
			||||||
    \caption{Thermischer Wind}
 | 
					 | 
				
			||||||
    \label{fig:therm-wind}
 | 
					 | 
				
			||||||
\end{figure}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Temperaturadvektion}
 | 
					 | 
				
			||||||
Verschiebung warmer oder kalter Luft (Norhemispäre: von S nach N Warmlufadvektion z.B. durch Barokline Welle (s. auch \ref{fig:energy-baroclinity}))
 | 
					 | 
				
			||||||
$$F = -\vec{v}\cdot\vec{\nabla} T$$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Ageostrophischer Wind}
 | 
					 | 
				
			||||||
Senkrecht auf den Wind (normal)
 | 
					 | 
				
			||||||
$$V_{an} = \frac{1}{f}\frac{DV}{Dt}$$
 | 
					 | 
				
			||||||
Entlang dem Wind (streamwise)
 | 
					 | 
				
			||||||
$$V_{as} = \frac{1}{f}\frac{V^2}{R_t}$$
 | 
					 | 
				
			||||||
wobei $V$ die horizontale Windgeschwindigkeit, $f$ der Coriolisparameter und $R_t$ die Krümmung der Trajektorie (zyklonal = positiv) ist.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\section{Satellitenbilder}
 | 
					 | 
				
			||||||
\subsection{Kanäle}
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
    \item \textbf{VIS}: Intensität abhängig von Albedo, hohe Intensität = hohereflektierende Fläche = weiss, Unterscheidung Wolken - Eisschwierig, nur am Tag VIS Bilder
 | 
					 | 
				
			||||||
    \item \textbf{WV}: durch Strahlungsmessung von obersterstark  feuchter  Schicht  in  Atmosphäre.  Obere  Troposphäreund tiefe Temperaturen $\Rightarrow$ geringe Intensitäten = weiss. Für Feuchteverhältnisse in oberer Troposphäre (300-600 hPA). Passiver Tracer der atmosphärischen Strömung
 | 
					 | 
				
			||||||
    \item \textbf{IR}: Temp. der abstrahlenden Oberfläche. Warm = hohe Intensität = schwarz. Hohe Wolken weiss, weil Oberfläche kalt.Hohe/tiefe Wolken lassen sich gut unterscheiden. Tiefe Wolken/Nebel kaum sichtbar, da $\Delta T$ zu gering. Misst $\lambda_{max} \Rightarrow T_{Wolke}$
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\section{Dynamik}
 | 
					 | 
				
			||||||
\subsection{Vorticity}
 | 
					 | 
				
			||||||
$$\xi = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = \vec{k} \cdot \nabla \times \vec{v_h}$$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
$$\frac{d\xi}{dt} = -\vec{v}\cdot \vec{\nabla}(\xi + f) - (\xi + f)\bigg(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\bigg)$$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Potentielle Vorticity (PV)}
 | 
					 | 
				
			||||||
$$Q = \frac{1}{\rho}(f+\xi)\frac{\partial \theta}{\partial z}$$
 | 
					 | 
				
			||||||
für synoptische Skalen ($\xi \ll f$) vereinfacht sich der Ausdruck zu
 | 
					 | 
				
			||||||
$$Q = \frac{1}{\rho}f\frac{\partial \theta}{\partial z}$$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
    \item Grenze der Stratosphäre bei 2PVU
 | 
					 | 
				
			||||||
    \item Bleibt bei trockenadiabatioschen Prozessen erhalten
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsubsection{Invertibilitätsprinzip}
 | 
					 | 
				
			||||||
PV-Verteilung in Atmosphäre zusammen mit Verteilung derpotentiellen Temperatur am Boden legt die quasi- horizontaleStrömung (Druck-, Temperatur-, Windfeld) fest.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{PV-Streamer}
 | 
					 | 
				
			||||||
\begin{figure}[H]
 | 
					 | 
				
			||||||
    \centering
 | 
					 | 
				
			||||||
    \includegraphics[width=5cm]{pv-streamer.png}
 | 
					 | 
				
			||||||
    \caption{Wind entlang eines PV-Streamer}
 | 
					 | 
				
			||||||
    \label{fig:pv-streamer}
 | 
					 | 
				
			||||||
\end{figure}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{PV-Anomalien}
 | 
					 | 
				
			||||||
\begin{figure}[H]
 | 
					 | 
				
			||||||
    \centering
 | 
					 | 
				
			||||||
    \includegraphics[width=5cm]{pv-anomaly.png}
 | 
					 | 
				
			||||||
    \caption{Schnitt eines PV-Streamer (positive Anomalie)}
 | 
					 | 
				
			||||||
    \label{fig:pv-anomaly}
 | 
					 | 
				
			||||||
\end{figure}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsubsection{Erzeugung und Vernichtung von PV}
 | 
					 | 
				
			||||||
$$\frac{D}{Dt} Q = -g \vec{\eta_p} \cdot \vec{\nabla_p} \dot{\theta} - g\vec{\nabla_p} \theta \cdot (\vec{\nabla_p} \times \vec{F})$$
 | 
					 | 
				
			||||||
Wobei $\dot{\theta} \space [\mathrm{Ks^{-1}}]$ die adiabatische Heizrate und $\vec{F}$ die Summe der nicht-konservativen Kräfte
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\section{Lagrange'sche- vs Euler'sche Perspektive}
 | 
					 | 
				
			||||||
\subsection{Lagrange'sche Perspektive}
 | 
					 | 
				
			||||||
Aus Sicht eines Partikels $\Rightarrow$ materielle Ableitung\\
 | 
					 | 
				
			||||||
Z.B.
 | 
					 | 
				
			||||||
$$\frac{D \theta}{Dt} = \frac{\partial \theta}{\partial t} + (v \cdot \nabla) \theta$$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Euler'sche Perspektive}
 | 
					 | 
				
			||||||
Aus Sicht eines ortsfesten Punktes\\
 | 
					 | 
				
			||||||
Z.B.
 | 
					 | 
				
			||||||
$$\frac{\partial \theta}{\partial t}$$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\section{Globale Zirkulation}
 | 
					 | 
				
			||||||
\subsection{Antrieb}
 | 
					 | 
				
			||||||
\begin{figure}[H]
 | 
					 | 
				
			||||||
    \centering
 | 
					 | 
				
			||||||
    \includegraphics[width=5cm]{rad_balance_ERBE_1987.jpg}
 | 
					 | 
				
			||||||
    \caption{Differentielle Erwärmung}
 | 
					 | 
				
			||||||
    \label{fig:radiation-balance}
 | 
					 | 
				
			||||||
\end{figure}
 | 
					 | 
				
			||||||
Zirkulation (Wärmefluss gegen Pole) wirkt Strahlungsunterschieden entgegen.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Jets}
 | 
					 | 
				
			||||||
Hadley Cell (thermisch direkt), Ferrel Cell (thermisch indirekt) und polar Cell (thermisch direkt) führen zu Jets zwischen den einzelnen Zellen
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsubsection{Thermisch direkte Zirkulation}
 | 
					 | 
				
			||||||
Aufsteigen in tieferen Breiten, absinken in höheren Breiten
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Umwandlung der Energie}
 | 
					 | 
				
			||||||
\begin{figure}[H]
 | 
					 | 
				
			||||||
    \centering
 | 
					 | 
				
			||||||
    \includegraphics[width=5cm]{energy.png}
 | 
					 | 
				
			||||||
    \caption{Umwandlung der Energieformen}
 | 
					 | 
				
			||||||
    \label{fig:energy-forms}
 | 
					 | 
				
			||||||
\end{figure}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsubsection{Baroklinität}
 | 
					 | 
				
			||||||
\begin{figure}[H]
 | 
					 | 
				
			||||||
    \centering
 | 
					 | 
				
			||||||
    \includegraphics[width=6cm]{baroclinity.png}
 | 
					 | 
				
			||||||
    \caption{Energie aus Baroklinität}
 | 
					 | 
				
			||||||
    \label{fig:energy-baroclinity}
 | 
					 | 
				
			||||||
\end{figure}
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
    \item Baroklinität führt zu kinetischer Energie (grösserer Gradient $\rightarrow$ höhere potentielle Energie)
 | 
					 | 
				
			||||||
    \item Die Baroklinität ist im Winter grösser als Sommer (v.a. weiter südlich)
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsubsection{Barokline Welle}
 | 
					 | 
				
			||||||
\begin{figure}[H]
 | 
					 | 
				
			||||||
    \centering
 | 
					 | 
				
			||||||
    \includegraphics[width=6cm]{barocline-wave.png}
 | 
					 | 
				
			||||||
    \caption{Barokline Welle mit Wellenachse}
 | 
					 | 
				
			||||||
    \label{fig:wave-baroclinity}
 | 
					 | 
				
			||||||
\end{figure}
 | 
					 | 
				
			||||||
Tiefdruckgebietsbildung an Trog-Vorderseite
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Heiztank Beispiel}
 | 
					 | 
				
			||||||
\begin{figure}[H]
 | 
					 | 
				
			||||||
    \centering
 | 
					 | 
				
			||||||
    \includegraphics[width=6cm]{heat-tank-example.png}
 | 
					 | 
				
			||||||
    \caption{Thermische Zirkulation}
 | 
					 | 
				
			||||||
    \label{fig:circulation-example}
 | 
					 | 
				
			||||||
\end{figure}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\section{Tropopause}
 | 
					 | 
				
			||||||
Sprünge bei Jetstream-Einflusss
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Definitionen}
 | 
					 | 
				
			||||||
\subsubsection{Thermische Tropopause}
 | 
					 | 
				
			||||||
$$-\frac{dT}{dz} < 2Kkm^{-1}$$
 | 
					 | 
				
			||||||
für min. 2km
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
    \item basiert nicht auf einer Erhaltungsgrösse (willkürlich)
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsubsection{Dynamische Tropopause}
 | 
					 | 
				
			||||||
$$Q = 2\mathrm{pvu}$$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
    \item basiert auf der adiabatischen Erhaltungsgrösse $Q$ (PV)
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsubsection{Chemische Tropopause}
 | 
					 | 
				
			||||||
Fläche bestimmter Ozonkonzentration
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsubsection{Tropische Tropopause}
 | 
					 | 
				
			||||||
Da am Äquator $f=0$:
 | 
					 | 
				
			||||||
$$Q \approx \frac{1}{\rho}f\frac{\partial \theta}{\partial z} = 0$$
 | 
					 | 
				
			||||||
Darum Isentrope Fläche 380K für tropische Regionen
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Stratosphere-Troposhphere Exchange (STE)}
 | 
					 | 
				
			||||||
Im Winter am grössten
 | 
					 | 
				
			||||||
\subsubsection{Tropo- to Stratoshpere Transport (TST)}
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
    \item Maximum über Nordatlantik und Westamerika
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsubsection{Strato- to Troposhpere Transport (STT)}
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
    \item Maximum über Nordatlantik und -pazifik (Stormtracks)
 | 
					 | 
				
			||||||
    \item meist shallow exchanges
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Prozesse}
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
    \item Tropo- bzw. Stratosphärische Cutoffs
 | 
					 | 
				
			||||||
    \item Streamer
 | 
					 | 
				
			||||||
    \item Tropopausenfalten
 | 
					 | 
				
			||||||
    \item brechende Schwerewellen
 | 
					 | 
				
			||||||
    \item Kovektion
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\section{Isotopen-Meteorologie}
 | 
					 | 
				
			||||||
\subsection{Isotopenverhältnis}
 | 
					 | 
				
			||||||
$$\delta = \frac{R_\mathrm{sample}-R_\mathrm{std}}{R_\mathrm{std}}$$
 | 
					 | 
				
			||||||
$R_\mathrm{std}2H = 0.00015576$ \\
 | 
					 | 
				
			||||||
$R_\mathrm{std}18O = 0.00200520$ \\
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Fraktionierung}
 | 
					 | 
				
			||||||
\subsubsection{Gleichgewichts Fraktionierung}
 | 
					 | 
				
			||||||
Bei $RH=100\%$
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
    \item Bei Phasenübergängen werden Isotopen nicht gleich verteilt
 | 
					 | 
				
			||||||
    \item Schwere Isotopen bevorzugen Phase mit stärkerer Bindung (da tieferer Sättigungsdampfdruck)
 | 
					 | 
				
			||||||
    \item Grösser bei tiefen Temperaturen
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsubsection{Nicht-Gleichgewichts Fraktionierung}
 | 
					 | 
				
			||||||
Bei $RH<100\%$
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
    \item Bei Phasenübergängen werden Isotopen nicht gleich verteilt
 | 
					 | 
				
			||||||
    \item Schwere Isotopen haben eine geringere Diffusivität
 | 
					 | 
				
			||||||
    \item Grösser bei starker Untersättigung
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\begin{figure}[H]
 | 
					 | 
				
			||||||
    \centering
 | 
					 | 
				
			||||||
    \includegraphics[width=6cm]{isotopes.png}
 | 
					 | 
				
			||||||
    \caption{Schematische Verteilung von Isotopen}
 | 
					 | 
				
			||||||
    \label{fig:isotopes}
 | 
					 | 
				
			||||||
\end{figure}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\section{Gebirgsmeteorologie}
 | 
					 | 
				
			||||||
\subsection{Um- oder Überstömung}
 | 
					 | 
				
			||||||
Möglicher Ablauf
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
    \item (a) Deformation der Kaltfront und Ausbildung von Südföhn
 | 
					 | 
				
			||||||
    \item (b) Kaltluftausbruch ins westliche Mittelmeer (Mistral) und Bildung einer Lee-Zyklone
 | 
					 | 
				
			||||||
    \item (c) Bewegung der Lee-Zyklone nach Osten und Einsetzen von Bora und Nordföhn
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
\begin{figure}[H]
 | 
					 | 
				
			||||||
    \centering
 | 
					 | 
				
			||||||
    \includegraphics[width=6cm]{alpenumströmung.png}
 | 
					 | 
				
			||||||
    \caption{Wechselwirkung Kaltfront}
 | 
					 | 
				
			||||||
    \label{fig:alps}
 | 
					 | 
				
			||||||
\end{figure}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsubsection{Lee-Zyklogenese}
 | 
					 | 
				
			||||||
Durch Mistral entsteht PV-Anomalie am Westrand der Alpen. Diese schnürt sich eventuell ab und beginnt die Zyklogenese im Golf von Genua.
 | 
					 | 
				
			||||||
Höhen-PV-Streamer unterstütz dieses Vorgehen mit Cut-Off. (Zusammenspiel von Höhen- und Boden-PV-Anomalien)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsubsection{Inverse Froude-number}
 | 
					 | 
				
			||||||
Zum Abschätzen ob die Luft ein Gebirge Um- oder Überströmt (kleine $Fr \rightarrow$ wahrscheinlichere Überströmung).
 | 
					 | 
				
			||||||
$$Fr = \frac{NH}{U}$$
 | 
					 | 
				
			||||||
Wobei $N$ die Schichtung (Brunt-Väisälla), $H$ die Gebirgshöhe und $U$ die Anströmgeschwindigkeit ist.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Schwerewellen}
 | 
					 | 
				
			||||||
\subsection{Entstehung}
 | 
					 | 
				
			||||||
Störung in der Druckverteilung durch auf- und absteigende Bewegungen, die sich vertikal ausbreitet.
 | 
					 | 
				
			||||||
\begin{figure}[H]
 | 
					 | 
				
			||||||
    \centering
 | 
					 | 
				
			||||||
    \includegraphics[width=5cm]{gravity-waves.png}
 | 
					 | 
				
			||||||
    \caption{Schwerewellen bei Überströmung eines Gebirges}
 | 
					 | 
				
			||||||
    \label{fig:gravity-waves}
 | 
					 | 
				
			||||||
\end{figure}
 | 
					 | 
				
			||||||
Verantwortlich für die Bildung von Lenticularis \\ 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Brechende Schwerewellen}
 | 
					 | 
				
			||||||
Verändert das Windfeld (vertikal und horizontal) stark, kann zu starken Turbulenzen führen.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\section{Planetare Grenzschicht}
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
    \item Bis ca. 1km (Höhe der tieffsten Inversion)
 | 
					 | 
				
			||||||
    \item Geostrophisches GGW gilt hier nicht
 | 
					 | 
				
			||||||
    \item Hohe Aerosolkonzentration
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsection{Turbulente kinetische Energie (TKE)}
 | 
					 | 
				
			||||||
$$TKE = \frac{1}{2}(\bar{u'}^2+\bar{v'}^2+\bar{w'}^2)$$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
$$\frac{\partial}{\partial t}(TKE) = -\overline{u'w'}\cdot \frac{\partial \bar{u}}{\partial z} - \overline{v'w'}\cdot \frac{\partial \bar{v}}{\partial z} + \frac{g}{\bar{\theta_v}} \cdot \overline{w'\theta'_v}$$
 | 
					 | 
				
			||||||
$$-\frac{\partial}{\partial z}(\overline{w'TKE}+\frac{\overline{w'p'}}{\rho})-\epsilon$$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\subsubsection{Richardson Zahl}
 | 
					 | 
				
			||||||
$$Rf = \frac{g}{\bar{\theta_v}} \cdot \overline{w'\theta_v'} \cdot (\overline{u'w'}\frac{\partial \bar{u}}{\partial z} + \overline{v'w'}\frac{\partial \bar{v}}{\partial z})$$
 | 
					 | 
				
			||||||
$Rf < 1$: Turbulenz, $Rf > 1$: keine Turbulenz
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\section{Konstanten}
 | 
					 | 
				
			||||||
\begin{itemize}
 | 
					 | 
				
			||||||
    \item $R_\mathrm{s, dry-air} = 287.058 \space \mathrm{J}\mathrm{kg}^{-1}\mathrm{K}^{-1}$
 | 
					 | 
				
			||||||
    \item $c_\mathrm{p, dry-air} = 1005 \mathrm{J}\mathrm{kg}^{-1}\mathrm{K}^{-1}$
 | 
					 | 
				
			||||||
    \item $\kappa = \frac{R_\mathrm{s, dry-air}}{c_{p,\mathrm{dry-air}}} = 0.28$
 | 
					 | 
				
			||||||
    \item $1 \mathrm{pvu} = 1 \times 10^{-6}\mathrm{m}^2\mathrm{s}^{-1}\mathrm{K}\mathrm{kg}^{-1}$
 | 
					 | 
				
			||||||
\end{itemize}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\scriptsize
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\section{Copyleft}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\doclicenseImage \\
 | 
					 | 
				
			||||||
Dieses Dokument ist unter (CC BY-SA 3.0) freigegeben \\
 | 
					 | 
				
			||||||
\faGlobeEurope \kern 1em \url{https://n.ethz.ch/~jannisp} \\
 | 
					 | 
				
			||||||
\faGit \kern 0.88em \url{https://git.thisfro.ch/thisfro/wettersysteme-zf} \\
 | 
					 | 
				
			||||||
Jannis Portmann, HS20
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
\end{multicols*}
 | 
					 | 
				
			||||||
\end{document}
 | 
					 | 
				
			||||||
| 
		 Before Width: | Height: | Size: 141 KiB  | 
| 
		 Before Width: | Height: | Size: 316 KiB  | 
| 
		 Before Width: | Height: | Size: 52 KiB  | 
| 
		 Before Width: | Height: | Size: 310 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								img/energy.png
									
										
									
									
									
								
							
							
						
						| 
		 Before Width: | Height: | Size: 182 KiB  | 
| 
		 Before Width: | Height: | Size: 411 KiB  | 
| 
		 Before Width: | Height: | Size: 260 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								img/isotopes.png
									
										
									
									
									
								
							
							
						
						| 
		 Before Width: | Height: | Size: 218 KiB  | 
| 
		 Before Width: | Height: | Size: 556 KiB  | 
| 
		 Before Width: | Height: | Size: 85 KiB  | 
| 
		 Before Width: | Height: | Size: 42 KiB  | 
| 
		 Before Width: | Height: | Size: 30 KiB  | 
| 
		 Before Width: | Height: | Size: 97 KiB  | 
| 
		 Before Width: | Height: | Size: 78 KiB  |