Initial commit
This commit is contained in:
		
							parent
							
								
									6091367bca
								
							
						
					
					
						commit
						70defc82fe
					
				
					 1 changed files with 473 additions and 0 deletions
				
			
		
							
								
								
									
										473
									
								
								Wettersysteme-ZF.tex
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										473
									
								
								Wettersysteme-ZF.tex
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,473 @@ | ||||||
|  | \documentclass[8pt,landscape]{extarticle} | ||||||
|  | \usepackage{multicol} | ||||||
|  | \usepackage{calc} | ||||||
|  | \usepackage{bookmark} | ||||||
|  | \usepackage{ifthen} | ||||||
|  | \usepackage[a4paper, landscape]{geometry} | ||||||
|  | \usepackage{hyperref} | ||||||
|  | % \usepackage{ccicons} | ||||||
|  | \usepackage{amsmath, amsfonts, amssymb, amsthm} | ||||||
|  | \usepackage{listings} | ||||||
|  | \usepackage{graphicx} | ||||||
|  | \usepackage{fontawesome5} | ||||||
|  | \usepackage{xcolor} | ||||||
|  | \usepackage{float} | ||||||
|  | \usepackage[ | ||||||
|  |     type={CC}, | ||||||
|  |     modifier={by-sa}, | ||||||
|  |     version={3.0} | ||||||
|  | ]{doclicense} | ||||||
|  | 
 | ||||||
|  | \graphicspath{{./img/}}  | ||||||
|  | 
 | ||||||
|  | \definecolor{codegreen}{rgb}{0,0.6,0} | ||||||
|  | \definecolor{codegray}{rgb}{0.5,0.5,0.5} | ||||||
|  | \definecolor{codepurple}{rgb}{0.58,0,0.82} | ||||||
|  | \definecolor{backcolour}{rgb}{0.95,0.95,0.92} | ||||||
|  | 
 | ||||||
|  | \lstdefinestyle{mystyle}{ | ||||||
|  |     backgroundcolor=\color{backcolour}, | ||||||
|  |     commentstyle=\color{codegreen}, | ||||||
|  |     keywordstyle=\color{magenta}, | ||||||
|  |     numberstyle=\tiny\color{codegray}, | ||||||
|  |     stringstyle=\color{codepurple}, | ||||||
|  |     basicstyle=\ttfamily\footnotesize, | ||||||
|  |     breakatwhitespace=false, | ||||||
|  |     breaklines=true, | ||||||
|  |     captionpos=b, | ||||||
|  |     keepspaces=true, | ||||||
|  |     numbers=left, | ||||||
|  |     numbersep=5pt, | ||||||
|  |     showspaces=false, | ||||||
|  |     showstringspaces=false, | ||||||
|  |     showtabs=false, | ||||||
|  |     tabsize=2 | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | \lstset{style=mystyle} | ||||||
|  | 
 | ||||||
|  | % To make this come out properly in landscape mode, do one of the following | ||||||
|  | % 1. | ||||||
|  | %  pdflatex latexsheet.tex | ||||||
|  | % | ||||||
|  | % 2. | ||||||
|  | %  latex latexsheet.tex | ||||||
|  | %  dvips -P pdf  -t landscape latexsheet.dvi | ||||||
|  | %  ps2pdf latexsheet.ps | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | % If you're reading this, be prepared for confusion.  Making this was | ||||||
|  | % a learning experience for me, and it shows.  Much of the placement | ||||||
|  | % was hacked in; if you make it better, let me know... | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | % 2008-04 | ||||||
|  | % Changed page margin code to use the geometry package. Also added code for | ||||||
|  | % conditional page margins, depending on paper size. Thanks to Uwe Ziegenhagen | ||||||
|  | % for the suggestions. | ||||||
|  | 
 | ||||||
|  | % 2006-08 | ||||||
|  | % Made changes based on suggestions from Gene Cooperman. <gene at ccs.neu.edu> | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | % To Do: | ||||||
|  | % \listoffigures \listoftables | ||||||
|  | % \setcounter{secnumdepth}{0} | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | % This sets page margins to .5 inch if using letter paper, and to 1cm | ||||||
|  | % if using A4 paper. (This probably isn't strictly necessary.) | ||||||
|  | % If using another size paper, use default 1cm margins. | ||||||
|  | \ifthenelse{\lengthtest { \paperwidth = 11in}} | ||||||
|  | 	{ \geometry{top=.5in,left=.5in,right=.5in,bottom=.5in} } | ||||||
|  | 	{\ifthenelse{ \lengthtest{ \paperwidth = 297mm}} | ||||||
|  | 		{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} } | ||||||
|  | 		{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} } | ||||||
|  | 	} | ||||||
|  | 
 | ||||||
|  | % Turn off header and footer | ||||||
|  | \pagestyle{empty} | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | % Redefine section commands to use less space | ||||||
|  | \makeatletter | ||||||
|  | \renewcommand{\section}{\@startsection{section}{1}{0mm}% | ||||||
|  |                                 {-1ex plus -.5ex minus -.2ex}% | ||||||
|  |                                 {0.5ex plus .2ex}%x | ||||||
|  |                                 {\normalfont\large\bfseries}} | ||||||
|  | \renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}% | ||||||
|  |                                 {-1explus -.5ex minus -.2ex}% | ||||||
|  |                                 {0.5ex plus .2ex}% | ||||||
|  |                                 {\normalfont\normalsize\bfseries}} | ||||||
|  | \renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}% | ||||||
|  |                                 {-1ex plus -.5ex minus -.2ex}% | ||||||
|  |                                 {1ex plus .2ex}% | ||||||
|  |                                 {\normalfont\small\bfseries}} | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | \makeatother | ||||||
|  | 
 | ||||||
|  | % Define BibTeX command | ||||||
|  | \def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em | ||||||
|  |     T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}} | ||||||
|  | 
 | ||||||
|  | % Don't print section numbers | ||||||
|  | % \setcounter{secnumdepth}{0} | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | \setlength{\parindent}{0pt} | ||||||
|  | \setlength{\parskip}{0pt plus 0.5ex} | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | % ----------------------------------------------------------------------- | ||||||
|  | 
 | ||||||
|  | \begin{document} | ||||||
|  | 
 | ||||||
|  | \raggedright | ||||||
|  | \footnotesize | ||||||
|  | \begin{multicols*}{4} | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | % multicol parameters | ||||||
|  | % These lengths are set only within the two main columns | ||||||
|  | %\setlength{\columnseprule}{0.25pt} | ||||||
|  | \setlength{\premulticols}{1pt} | ||||||
|  | \setlength{\postmulticols}{1pt} | ||||||
|  | \setlength{\multicolsep}{1pt} | ||||||
|  | \setlength{\columnsep}{2pt} | ||||||
|  | 
 | ||||||
|  | \begin{center} | ||||||
|  |      \Large{ZF Wettersysteme asd} \\ | ||||||
|  | 		 \small{701-0473-00L Wettersysteme, bei M. Sprenger \& F. Aemisegger} \\ | ||||||
|  | 		 \small{Jannis Portmann \the\year} | ||||||
|  | \end{center} | ||||||
|  | 
 | ||||||
|  | \begin{center} | ||||||
|  | 	\rule{\linewidth}{0.25pt} | ||||||
|  | \end{center} | ||||||
|  | 
 | ||||||
|  | \section{Thermodynamik} | ||||||
|  | \subsection{Potentielle Temperatur} | ||||||
|  | $$\theta = T \bigg(\frac{p_o}{p} \bigg)^\kappa$$ | ||||||
|  | Bsp. | ||||||
|  | $$\frac{T_{Boden}}{T_{LCL}} = \bigg( \frac{p_{Boden}}{p_{LCL}} \bigg)^\kappa$$ | ||||||
|  | 
 | ||||||
|  | \subsection{Hydrostatische Grundgleichung} | ||||||
|  | $$\frac{dp}{dz} = -\rho g$$ | ||||||
|  | integriert | ||||||
|  | $$h = \frac{RT}{g}\ln \bigg(\frac{p_o}{p} \bigg)$$ | ||||||
|  | 
 | ||||||
|  | \subsection{Stabilität} | ||||||
|  | 
 | ||||||
|  | \begin{figure}[H] | ||||||
|  |     \centering | ||||||
|  |     \includegraphics[width=3.5cm]{stability.png} | ||||||
|  |     \caption{Hydrostatische Stabilität} | ||||||
|  |     \label{fig:stability} | ||||||
|  | \end{figure} | ||||||
|  | 
 | ||||||
|  | \subsubsection{Brunt-Väisälla Frequenz} | ||||||
|  | $$N^2 = \frac{g}{\theta}\frac{\partial \theta}{\partial z}$$ | ||||||
|  | $N^2 > 0: stabil$ | ||||||
|  | 
 | ||||||
|  | \section{Winde und Fronten} | ||||||
|  | \subsection{Geostrophischer Wind} | ||||||
|  | $$fu_G = -g \frac{\partial \phi}{\partial y}$$ | ||||||
|  | $$fv_G = g \frac{\partial \phi}{\partial x}$$ | ||||||
|  | wobei $f$ der Coriolis-Parameter ist. | ||||||
|  | 
 | ||||||
|  | Geostrophische Näherung ist gültig, wenn der Rossby-Parameter $<1$. | ||||||
|  | $$Ro = \frac{U}{fL}<1$$ | ||||||
|  | 
 | ||||||
|  | \subsection{Thermischer Wind} | ||||||
|  | $$\frac{\partial v_g}{\partial z} = \frac{g}{fT} \vec{k} \times \nabla_hT$$ | ||||||
|  | integriert | ||||||
|  | $$\vec{v_T}=\vec{v_g}(p_1)-\vec{v_g}(p_2) = \frac{R}{f}\ln \bigg(\frac{p_1}{p_2} \bigg)\vec{k} \times \nabla_h T$$ | ||||||
|  | wobei | ||||||
|  | $\vec{k} \times \nabla_h T = \frac{\Delta T}{\Delta y}$ | ||||||
|  | 
 | ||||||
|  | \begin{figure}[H] | ||||||
|  |     \centering | ||||||
|  |     \includegraphics[width=5cm]{thermischer_wind.png} | ||||||
|  |     \caption{Thermischer Wind} | ||||||
|  |     \label{fig:therm-wind} | ||||||
|  | \end{figure} | ||||||
|  | 
 | ||||||
|  | \subsection{Temperaturadvektion} | ||||||
|  | Verschiebung warmer oder kalter Luft (Norhemispäre: von S nach N Warmlufadvektion z.B. durch Barokline Welle (s. auch \ref{fig:energy-baroclinity})) | ||||||
|  | $$F = -\vec{v}\cdot\vec{\nabla} T$$ | ||||||
|  | 
 | ||||||
|  | \subsection{Ageostrophischer Wind} | ||||||
|  | Senkrecht auf den Wind (normal) | ||||||
|  | $$V_{an} = \frac{1}{f}\frac{DV}{Dt}$$ | ||||||
|  | Entlang dem Wind (streamwise) | ||||||
|  | $$V_{as} = \frac{1}{f}\frac{V^2}{R_t}$$ | ||||||
|  | wobei $V$ die horizontale Windgeschwindigkeit, $f$ der Coriolisparameter und $R_t$ die Krümmung der Trajektorie (zyklonal = positiv) ist. | ||||||
|  | 
 | ||||||
|  | \section{Satellitenbilder} | ||||||
|  | \subsection{Kanäle} | ||||||
|  | \begin{itemize} | ||||||
|  |     \item \textbf{VIS}: Intensität abhängig von Albedo, hohe Intensität = hohereflektierende Fläche = weiss, Unterscheidung Wolken - Eisschwierig, nur am Tag VIS Bilder | ||||||
|  |     \item \textbf{WV}: durch Strahlungsmessung von obersterstark  feuchter  Schicht  in  Atmosphäre.  Obere  Troposphäreund tiefe Temperaturen $\Rightarrow$ geringe Intensitäten = weiss. Für Feuchteverhältnisse in oberer Troposphäre (300-600 hPA). Passiver Tracer der atmosphärischen Strömung | ||||||
|  |     \item \textbf{IR}: Temp. der abstrahlenden Oberfläche. Warm = hohe Intensität = schwarz. Hohe Wolken weiss, weil Oberfläche kalt.Hohe/tiefe Wolken lassen sich gut unterscheiden. Tiefe Wolken/Nebel kaum sichtbar, da $\Delta T$ zu gering. Misst $\lambda_{max} \Rightarrow T_{Wolke}$ | ||||||
|  | \end{itemize} | ||||||
|  | 
 | ||||||
|  | \section{Dynamik} | ||||||
|  | \subsection{Vorticity} | ||||||
|  | $$\xi = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = \vec{k} \cdot \nabla \times \vec{v_h}$$ | ||||||
|  | 
 | ||||||
|  | $$\frac{d\xi}{dt} = -\vec{v}\cdot \vec{\nabla}(\xi + f) - (\xi + f)\bigg(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\bigg)$$ | ||||||
|  | 
 | ||||||
|  | \subsection{Potentielle Vorticity (PV)} | ||||||
|  | $$Q = \frac{1}{\rho}(f+\xi)\frac{\partial \theta}{\partial z}$$ | ||||||
|  | für synoptische Skalen ($\xi \ll f$) vereinfacht sich der Ausdruck zu | ||||||
|  | $$Q = \frac{1}{\rho}f\frac{\partial \theta}{\partial z}$$ | ||||||
|  | 
 | ||||||
|  | \begin{itemize} | ||||||
|  |     \item Grenze der Stratosphäre bei 2PVU | ||||||
|  |     \item Bleibt bei trockenadiabatioschen Prozessen erhalten | ||||||
|  | \end{itemize} | ||||||
|  | 
 | ||||||
|  | \subsubsection{Invertibilitätsprinzip} | ||||||
|  | PV-Verteilung in Atmosphäre zusammen mit Verteilung derpotentiellen Temperatur am Boden legt die quasi- horizontaleStrömung (Druck-, Temperatur-, Windfeld) fest. | ||||||
|  | 
 | ||||||
|  | \subsection{PV-Streamer} | ||||||
|  | \begin{figure}[H] | ||||||
|  |     \centering | ||||||
|  |     \includegraphics[width=5cm]{pv-streamer.png} | ||||||
|  |     \caption{Wind entlang eines PV-Streamer} | ||||||
|  |     \label{fig:pv-streamer} | ||||||
|  | \end{figure} | ||||||
|  | 
 | ||||||
|  | \subsection{PV-Anomalien} | ||||||
|  | \begin{figure}[H] | ||||||
|  |     \centering | ||||||
|  |     \includegraphics[width=5cm]{pv-anomaly.png} | ||||||
|  |     \caption{Schnitt eines PV-Streamer (positive Anomalie)} | ||||||
|  |     \label{fig:pv-anomaly} | ||||||
|  | \end{figure} | ||||||
|  | 
 | ||||||
|  | \subsubsection{Erzeugung und Vernichtung von PV} | ||||||
|  | $$\frac{D}{Dt} Q = -g \vec{\eta_p} \cdot \vec{\nabla_p} \dot{\theta} - g\vec{\nabla_p} \theta \cdot (\vec{\nabla_p} \times \vec{F})$$ | ||||||
|  | Wobei $\dot{\theta} \space [\mathrm{Ks^{-1}}]$ die adiabatische Heizrate und $\vec{F}$ die Summe der nicht-konservativen Kräfte | ||||||
|  | 
 | ||||||
|  | \section{Lagrange'sche- vs Euler'sche Perspektive} | ||||||
|  | \subsection{Lagrange'sche Perspektive} | ||||||
|  | Aus Sicht eines Partikels $\Rightarrow$ materielle Ableitung\\ | ||||||
|  | Z.B. | ||||||
|  | $$\frac{D \theta}{Dt} = \frac{\partial \theta}{\partial t} + (v \cdot \nabla) \theta$$ | ||||||
|  | 
 | ||||||
|  | \subsection{Euler'sche Perspektive} | ||||||
|  | Aus Sicht eines ortsfesten Punktes\\ | ||||||
|  | Z.B. | ||||||
|  | $$\frac{\partial \theta}{\partial t}$$ | ||||||
|  | 
 | ||||||
|  | \section{Globale Zirkulation} | ||||||
|  | \subsection{Antrieb} | ||||||
|  | \begin{figure}[H] | ||||||
|  |     \centering | ||||||
|  |     \includegraphics[width=5cm]{rad_balance_ERBE_1987.jpg} | ||||||
|  |     \caption{Differentielle Erwärmung} | ||||||
|  |     \label{fig:radiation-balance} | ||||||
|  | \end{figure} | ||||||
|  | Zirkulation (Wärmefluss gegen Pole) wirkt Strahlungsunterschieden entgegen. | ||||||
|  | 
 | ||||||
|  | \subsection{Jets} | ||||||
|  | Hadley Cell (thermisch direkt), Ferrel Cell (thermisch indirekt) und polar Cell (thermisch direkt) führen zu Jets zwischen den einzelnen Zellen | ||||||
|  | 
 | ||||||
|  | \subsubsection{Thermisch direkte Zirkulation} | ||||||
|  | Aufsteigen in tieferen Breiten, absinken in höheren Breiten | ||||||
|  | 
 | ||||||
|  | \subsection{Umwandlung der Energie} | ||||||
|  | \begin{figure}[H] | ||||||
|  |     \centering | ||||||
|  |     \includegraphics[width=5cm]{energy.png} | ||||||
|  |     \caption{Umwandlung der Energieformen} | ||||||
|  |     \label{fig:energy-forms} | ||||||
|  | \end{figure} | ||||||
|  | 
 | ||||||
|  | \subsubsection{Baroklinität} | ||||||
|  | \begin{figure}[H] | ||||||
|  |     \centering | ||||||
|  |     \includegraphics[width=6cm]{baroclinity.png} | ||||||
|  |     \caption{Energie aus Baroklinität} | ||||||
|  |     \label{fig:energy-baroclinity} | ||||||
|  | \end{figure} | ||||||
|  | \begin{itemize} | ||||||
|  |     \item Baroklinität führt zu kinetischer Energie (grösserer Gradient $\rightarrow$ höhere potentielle Energie) | ||||||
|  |     \item Die Baroklinität ist im Winter grösser als Sommer (v.a. weiter südlich) | ||||||
|  | \end{itemize} | ||||||
|  | 
 | ||||||
|  | \subsubsection{Barokline Welle} | ||||||
|  | \begin{figure}[H] | ||||||
|  |     \centering | ||||||
|  |     \includegraphics[width=6cm]{barocline-wave.png} | ||||||
|  |     \caption{Barokline Welle mit Wellenachse} | ||||||
|  |     \label{fig:wave-baroclinity} | ||||||
|  | \end{figure} | ||||||
|  | Tiefdruckgebietsbildung an Trog-Vorderseite | ||||||
|  | 
 | ||||||
|  | \subsection{Heiztank Beispiel} | ||||||
|  | \begin{figure}[H] | ||||||
|  |     \centering | ||||||
|  |     \includegraphics[width=6cm]{heat-tank-example.png} | ||||||
|  |     \caption{Thermische Zirkulation} | ||||||
|  |     \label{fig:circulation-example} | ||||||
|  | \end{figure} | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | \section{Tropopause} | ||||||
|  | Sprünge bei Jetstream-Einflusss | ||||||
|  | 
 | ||||||
|  | \subsection{Definitionen} | ||||||
|  | \subsubsection{Thermische Tropopause} | ||||||
|  | $$-\frac{dT}{dz} < 2Kkm^{-1}$$ | ||||||
|  | für min. 2km | ||||||
|  | 
 | ||||||
|  | \begin{itemize} | ||||||
|  |     \item basiert nicht auf einer Erhaltungsgrösse (willkürlich) | ||||||
|  | \end{itemize} | ||||||
|  | 
 | ||||||
|  | \subsubsection{Dynamische Tropopause} | ||||||
|  | $$Q = 2\mathrm{pvu}$$ | ||||||
|  | 
 | ||||||
|  | \begin{itemize} | ||||||
|  |     \item basiert auf der adiabatischen Erhaltungsgrösse $Q$ (PV) | ||||||
|  | \end{itemize} | ||||||
|  | 
 | ||||||
|  | \subsubsection{Chemische Tropopause} | ||||||
|  | Fläche bestimmter Ozonkonzentration | ||||||
|  | 
 | ||||||
|  | \subsubsection{Tropische Tropopause} | ||||||
|  | Da am Äquator $f=0$: | ||||||
|  | $$Q \approx \frac{1}{\rho}f\frac{\partial \theta}{\partial z} = 0$$ | ||||||
|  | Darum Isentrope Fläche 380K für tropische Regionen | ||||||
|  | 
 | ||||||
|  | \subsection{Stratosphere-Troposhphere Exchange (STE)} | ||||||
|  | Im Winter am grössten | ||||||
|  | \subsubsection{Tropo- to Stratoshpere Transport (TST)} | ||||||
|  | \begin{itemize} | ||||||
|  |     \item Maximum über Nordatlantik und Westamerika | ||||||
|  | \end{itemize} | ||||||
|  | 
 | ||||||
|  | \subsubsection{Strato- to Troposhpere Transport (STT)} | ||||||
|  | \begin{itemize} | ||||||
|  |     \item Maximum über Nordatlantik und -pazifik (Stormtracks) | ||||||
|  |     \item meist shallow exchanges | ||||||
|  | \end{itemize} | ||||||
|  | 
 | ||||||
|  | \subsection{Prozesse} | ||||||
|  | \begin{itemize} | ||||||
|  |     \item Tropo- bzw. Stratosphärische Cutoffs | ||||||
|  |     \item Streamer | ||||||
|  |     \item Tropopausenfalten | ||||||
|  |     \item brechende Schwerewellen | ||||||
|  |     \item Kovektion | ||||||
|  | \end{itemize} | ||||||
|  | 
 | ||||||
|  | \section{Isotopen-Meteorologie} | ||||||
|  | \subsection{Isotopenverhältnis} | ||||||
|  | $$\delta = \frac{R_\mathrm{sample}-R_\mathrm{std}}{R_\mathrm{std}}$$ | ||||||
|  | $R_\mathrm{std}2H = 0.00015576$ \\ | ||||||
|  | $R_\mathrm{std}18O = 0.00200520$ \\ | ||||||
|  | 
 | ||||||
|  | \subsection{Fraktionierung} | ||||||
|  | \subsubsection{Gleichgewichts Fraktionierung} | ||||||
|  | Bei $RH=100\%$ | ||||||
|  | \begin{itemize} | ||||||
|  |     \item Bei Phasenübergängen werden Isotopen nicht gleich verteilt | ||||||
|  |     \item Schwere Isotopen bevorzugen Phase mit stärkerer Bindung (da tieferer Sättigungsdampfdruck) | ||||||
|  |     \item Grösser bei tiefen Temperaturen | ||||||
|  | \end{itemize} | ||||||
|  | 
 | ||||||
|  | \subsubsection{Nicht-Gleichgewichts Fraktionierung} | ||||||
|  | Bei $RH<100\%$ | ||||||
|  | \begin{itemize} | ||||||
|  |     \item Bei Phasenübergängen werden Isotopen nicht gleich verteilt | ||||||
|  |     \item Schwere Isotopen haben eine geringere Diffusivität | ||||||
|  |     \item Grösser bei starker Untersättigung | ||||||
|  | \end{itemize} | ||||||
|  | 
 | ||||||
|  | \begin{figure}[H] | ||||||
|  |     \centering | ||||||
|  |     \includegraphics[width=6cm]{isotopes.png} | ||||||
|  |     \caption{Schematische Verteilung von Isotopen} | ||||||
|  |     \label{fig:isotopes} | ||||||
|  | \end{figure} | ||||||
|  | 
 | ||||||
|  | \section{Gebirgsmeteorologie} | ||||||
|  | \subsection{Um- oder Überstömung} | ||||||
|  | Möglicher Ablauf | ||||||
|  | \begin{itemize} | ||||||
|  |     \item (a) Deformation der Kaltfront und Ausbildung von Südföhn | ||||||
|  |     \item (b) Kaltluftausbruch ins westliche Mittelmeer (Mistral) und Bildung einer Lee-Zyklone | ||||||
|  |     \item (c) Bewegung der Lee-Zyklone nach Osten und Einsetzen von Bora und Nordföhn | ||||||
|  | \end{itemize} | ||||||
|  | \begin{figure}[H] | ||||||
|  |     \centering | ||||||
|  |     \includegraphics[width=6cm]{alpenumströmung.png} | ||||||
|  |     \caption{Wechselwirkung Kaltfront} | ||||||
|  |     \label{fig:alps} | ||||||
|  | \end{figure} | ||||||
|  | 
 | ||||||
|  | \subsubsection{Lee-Zyklogenese} | ||||||
|  | Durch Mistral entsteht PV-Anomalie am Westrand der Alpen. Diese schnürt sich eventuell ab und beginnt die Zyklogenese im Golf von Genua. | ||||||
|  | Höhen-PV-Streamer unterstütz dieses Vorgehen mit Cut-Off. (Zusammenspiel von Höhen- und Boden-PV-Anomalien) | ||||||
|  | 
 | ||||||
|  | \subsubsection{Inverse Froude-number} | ||||||
|  | Zum Abschätzen ob die Luft ein Gebirge Um- oder Überströmt (kleine $Fr \rightarrow$ wahrscheinlichere Überströmung). | ||||||
|  | $$Fr = \frac{NH}{U}$$ | ||||||
|  | Wobei $N$ die Schichtung (Brunt-Väisälla), $H$ die Gebirgshöhe und $U$ die Anströmgeschwindigkeit ist. | ||||||
|  | 
 | ||||||
|  | \subsection{Schwerewellen} | ||||||
|  | \subsection{Entstehung} | ||||||
|  | Störung in der Druckverteilung durch auf- und absteigende Bewegungen, die sich vertikal ausbreitet. | ||||||
|  | \begin{figure}[H] | ||||||
|  |     \centering | ||||||
|  |     \includegraphics[width=5cm]{gravity-waves.png} | ||||||
|  |     \caption{Schwerewellen bei Überströmung eines Gebirges} | ||||||
|  |     \label{fig:gravity-waves} | ||||||
|  | \end{figure} | ||||||
|  | Verantwortlich für die Bildung von Lenticularis \\  | ||||||
|  | 
 | ||||||
|  | \subsection{Brechende Schwerewellen} | ||||||
|  | Verändert das Windfeld (vertikal und horizontal) stark, kann zu starken Turbulenzen führen. | ||||||
|  | 
 | ||||||
|  | \section{Planetare Grenzschicht} | ||||||
|  | \begin{itemize} | ||||||
|  |     \item Bis ca. 1km (Höhe der tieffsten Inversion) | ||||||
|  |     \item Geostrophisches GGW gilt hier nicht | ||||||
|  |     \item Hohe Aerosolkonzentration | ||||||
|  | \end{itemize} | ||||||
|  | 
 | ||||||
|  | \subsection{Turbulente kinetische Energie (TKE)} | ||||||
|  | $$TKE = \frac{1}{2}(\bar{u'}^2+\bar{v'}^2+\bar{w'}^2)$$ | ||||||
|  | 
 | ||||||
|  | $$\frac{\partial}{\partial t}(TKE) = -\overline{u'w'}\cdot \frac{\partial \bar{u}}{\partial z} - \overline{v'w'}\cdot \frac{\partial \bar{v}}{\partial z} + \frac{g}{\bar{\theta_v}} \cdot \overline{w'\theta'_v}$$ | ||||||
|  | $$-\frac{\partial}{\partial z}(\overline{w'TKE}+\frac{\overline{w'p'}}{\rho})-\epsilon$$ | ||||||
|  | 
 | ||||||
|  | \subsubsection{Richardson Zahl} | ||||||
|  | $$Rf = \frac{g}{\bar{\theta_v}} \cdot \overline{w'\theta_v'} \cdot (\overline{u'w'}\frac{\partial \bar{u}}{\partial z} + \overline{v'w'}\frac{\partial \bar{v}}{\partial z})$$ | ||||||
|  | $Rf < 1$: Turbulenz, $Rf > 1$: keine Turbulenz | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | \section{Konstanten} | ||||||
|  | \begin{itemize} | ||||||
|  |     \item $R_\mathrm{s, dry-air} = 287.058 \space \mathrm{J}\mathrm{kg}^{-1}\mathrm{K}^{-1}$ | ||||||
|  |     \item $c_\mathrm{p, dry-air} = 1005 \mathrm{J}\mathrm{kg}^{-1}\mathrm{K}^{-1}$ | ||||||
|  |     \item $\kappa = \frac{R_\mathrm{s, dry-air}}{c_{p,\mathrm{dry-air}}} = 0.28$ | ||||||
|  |     \item $1 \mathrm{pvu} = 1 \times 10^{-6}\mathrm{m}^2\mathrm{s}^{-1}\mathrm{K}\mathrm{kg}^{-1}$ | ||||||
|  | \end{itemize} | ||||||
|  | 
 | ||||||
|  | \scriptsize | ||||||
|  | 
 | ||||||
|  | \section{Copyleft} | ||||||
|  | 
 | ||||||
|  | \doclicenseImage \\ | ||||||
|  | Dieses Dokument ist unter (CC BY-SA 3.0) freigegeben \\ | ||||||
|  | \faGlobeEurope \kern 1em \url{https://n.ethz.ch/~jannisp} \\ | ||||||
|  | \faGit \kern 0.88em \url{https://git.thisfro.ch/thisfro/wettersysteme-zf} \\ | ||||||
|  | Jannis Portmann, HS20 | ||||||
|  | 
 | ||||||
|  | \end{multicols*} | ||||||
|  | \end{document} | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue