Expand SIR further
This commit is contained in:
parent
29c8f07229
commit
8e0b941d59
2 changed files with 30 additions and 4 deletions
|
@ -138,7 +138,7 @@
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\Large{ZF Mathematik V} \\
|
\Large{ZF Mathematik V} \\
|
||||||
\small{701-0106-00L Mathematik V, bei M. A. Sprenger} \\
|
\small{701-0106-00L Mathematik V} \\
|
||||||
\small{Jannis Portmann \the\year} \\
|
\small{Jannis Portmann \the\year} \\
|
||||||
{\ccbysa}
|
{\ccbysa}
|
||||||
\rule{\linewidth}{0.25pt}
|
\rule{\linewidth}{0.25pt}
|
||||||
|
@ -222,9 +222,10 @@ Eigenwerte $\det(\textbf{J} - \lambda \textbf{I}) = 0$ wobei $\lambda \in \mathb
|
||||||
|
|
||||||
SIR: Susceptible-Infected-Recovered \\
|
SIR: Susceptible-Infected-Recovered \\
|
||||||
|
|
||||||
|
\subsubsection{Single-Strain SIR}
|
||||||
\begin{figure}[H]
|
\begin{figure}[H]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=.3\textwidth]{SIR.png}
|
\includegraphics[width=.25\textwidth]{SIR.png}
|
||||||
\caption{SIR-Modell}
|
\caption{SIR-Modell}
|
||||||
\label{fig:sir}
|
\label{fig:sir}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
@ -245,9 +246,34 @@ $\beta S I$: Mass-action Infektionsrate \\
|
||||||
$$S_f = \Lambda / \delta_S, I_f=0, R_f=0$$
|
$$S_f = \Lambda / \delta_S, I_f=0, R_f=0$$
|
||||||
\item Endemic equilibrium:
|
\item Endemic equilibrium:
|
||||||
$$S = \frac{\delta_1 + r}{\beta} , I_e=\frac{\Lambda}{\delta_1} - \frac{\delta_S}{\beta}, R_e = \frac{r}{\delta_R}(\frac{\Lambda}{\delta_1 + r} - \frac{\delta_S}{\beta})$$
|
$$S = \frac{\delta_1 + r}{\beta} , I_e=\frac{\Lambda}{\delta_1} - \frac{\delta_S}{\beta}, R_e = \frac{r}{\delta_R}(\frac{\Lambda}{\delta_1 + r} - \frac{\delta_S}{\beta})$$
|
||||||
\item
|
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
Für das Disease-free equilibrium ergeben sich die Eigenwerte aus
|
||||||
|
$$(-\delta_S - \lambda)(\frac{\beta \Lambda}{\delta_S} - \delta_I - r - \lambda)(- \delta R - \lambda) = 0$$
|
||||||
|
also
|
||||||
|
\begin{itemize}
|
||||||
|
\item $\lambda_1 = -\delta_S$
|
||||||
|
\item $\lambda_2 = -\delta_R$
|
||||||
|
\item $\lambda_3 = \frac{\beta \Lambda}{\delta_S} - \delta_I - r$
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\subsubsection*{Reproduktionszahl $R_0$}
|
||||||
|
$$R_0 = \frac{\beta \Lambda}{\delta_S(\delta_I + r)} = \frac{\beta S_f}{\delta_I + r}$$
|
||||||
|
\begin{itemize}
|
||||||
|
\item $R_0 > 1$: Ausbreitung
|
||||||
|
\item $R_0 < 1$: Aussterben
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\subsubsection{Multi-Strain SIR}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=.25\textwidth]{SIR-2.png}
|
||||||
|
\caption{SIR-Modell mit zwei verschiedenen Erregern}
|
||||||
|
\label{fig:sir-2}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
Invasion von Strain (2), wenn $R_0^{(1)} < R_0^{(2)}$
|
||||||
|
|
||||||
\section{Taylor-Reihe}
|
\section{Taylor-Reihe}
|
||||||
An der stelle $a$ einer Funtkion $f(x)$
|
An der stelle $a$ einer Funtkion $f(x)$
|
||||||
$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + ...$$
|
$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + ...$$
|
||||||
|
@ -282,7 +308,7 @@ Jannis Portmann, FS21
|
||||||
\section*{Bildquellen}
|
\section*{Bildquellen}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Abb. \ref{fig:geo-coordinates}: E\^(nix) \& ttog, \url{https://de.wikipedia.org/wiki/Geographische_Koordinaten#/media/Datei:Geographic_coordinates_sphere.svg}
|
\item Abb. \ref{fig:geo-coordinates}: E\^(nix) \& ttog, \url{https://de.wikipedia.org/wiki/Geographische_Koordinaten#/media/Datei:Geographic_coordinates_sphere.svg}
|
||||||
\item Abb. \ref{fig:sir}: Vorlesungsunterlagen
|
\item Abb. \ref{fig:sir}, \ref{fig:sir-2}: Vorlesungsunterlagen
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\end{multicols*}
|
\end{multicols*}
|
||||||
|
|
BIN
img/SIR-2.png
Normal file
BIN
img/SIR-2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 112 KiB |
Loading…
Reference in a new issue