1015 lines
42 KiB
TeX
1015 lines
42 KiB
TeX
|
\documentclass[8pt,landscape]{extarticle}
|
|||
|
\usepackage{multicol}
|
|||
|
\usepackage{calc}
|
|||
|
\usepackage{ifthen}
|
|||
|
\usepackage[a4paper, landscape]{geometry}
|
|||
|
\usepackage{hyperref}
|
|||
|
\usepackage{ccicons}
|
|||
|
\usepackage{amsmath, amsfonts, amssymb, amsthm}
|
|||
|
\usepackage{listings}
|
|||
|
\usepackage{xcolor}
|
|||
|
\usepackage{graphicx}
|
|||
|
\usepackage{multirow}
|
|||
|
\usepackage{float}
|
|||
|
\usepackage[
|
|||
|
type={CC},
|
|||
|
modifier={by-nc-sa},
|
|||
|
version={3.0},
|
|||
|
]{doclicense}
|
|||
|
|
|||
|
\graphicspath{ {./img/} }
|
|||
|
|
|||
|
\definecolor{codegreen}{rgb}{0,0.6,0}
|
|||
|
\definecolor{codegray}{rgb}{0.5,0.5,0.5}
|
|||
|
\definecolor{codepurple}{rgb}{0.58,0,0.82}
|
|||
|
\definecolor{backcolour}{rgb}{0.9,0.9,0.9}
|
|||
|
|
|||
|
\lstdefinestyle{mystyle}{
|
|||
|
backgroundcolor=\color{backcolour},
|
|||
|
commentstyle=\color{codegreen},
|
|||
|
keywordstyle=\color{magenta},
|
|||
|
numberstyle=\tiny\color{codegray},
|
|||
|
stringstyle=\color{codepurple},
|
|||
|
basicstyle=\ttfamily\footnotesize,
|
|||
|
breakatwhitespace=false,
|
|||
|
breaklines=true,
|
|||
|
captionpos=b,
|
|||
|
keepspaces=true,
|
|||
|
numbers=left,
|
|||
|
numbersep=5pt,
|
|||
|
showspaces=false,
|
|||
|
showstringspaces=false,
|
|||
|
showtabs=false,
|
|||
|
tabsize=2
|
|||
|
}
|
|||
|
|
|||
|
\lstset{style=mystyle}
|
|||
|
|
|||
|
% To make this come out properly in landscape mode, do one of the following
|
|||
|
% 1.
|
|||
|
% pdflatex latexsheet.tex
|
|||
|
%
|
|||
|
% 2.
|
|||
|
% latex latexsheet.tex
|
|||
|
% dvips -P pdf -t landscape latexsheet.dvi
|
|||
|
% ps2pdf latexsheet.ps
|
|||
|
|
|||
|
|
|||
|
% If you're reading this, be prepared for confusion. Making this was
|
|||
|
% a learning experience for me, and it shows. Much of the placement
|
|||
|
% was hacked in; if you make it better, let me know...
|
|||
|
|
|||
|
|
|||
|
% 2008-04
|
|||
|
% Changed page margin code to use the geometry package. Also added code for
|
|||
|
% conditional page margins, depending on paper size. Thanks to Uwe Ziegenhagen
|
|||
|
% for the suggestions.
|
|||
|
|
|||
|
% 2006-08
|
|||
|
% Made changes based on suggestions from Gene Cooperman. <gene at ccs.neu.edu>
|
|||
|
|
|||
|
|
|||
|
% To Do:
|
|||
|
% \listoffigures \listoftables
|
|||
|
% \setcounter{secnumdepth}{0}
|
|||
|
|
|||
|
|
|||
|
% This sets page margins to .5 inch if using letter paper, and to 1cm
|
|||
|
% if using A4 paper. (This probably isn't strictly necessary.)
|
|||
|
% If using another size paper, use default 1cm margins.
|
|||
|
\ifthenelse{\lengthtest { \paperwidth = 11in}}
|
|||
|
{ \geometry{top=.5in,left=.5in,right=.5in,bottom=.5in} }
|
|||
|
{\ifthenelse{ \lengthtest{ \paperwidth = 297mm}}
|
|||
|
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
|
|||
|
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
|
|||
|
}
|
|||
|
|
|||
|
% Turn off header and footer
|
|||
|
\pagestyle{empty}
|
|||
|
|
|||
|
|
|||
|
% Redefine section commands to use less space
|
|||
|
\makeatletter
|
|||
|
\newcommand\sbullet[1][.5]{\mathbin{\vcenter{\hbox{\scalebox{#1}{$\bullet$}}}}}
|
|||
|
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
|
|||
|
{-1ex plus -.5ex minus -.2ex}%
|
|||
|
{0.5ex plus .2ex}%x
|
|||
|
{\normalfont\large\bfseries}}
|
|||
|
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
|
|||
|
{-1explus -.5ex minus -.2ex}%
|
|||
|
{0.5ex plus .2ex}%
|
|||
|
{\normalfont\normalsize\bfseries}}
|
|||
|
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
|
|||
|
{-1ex plus -.5ex minus -.2ex}%
|
|||
|
{1ex plus .2ex}%
|
|||
|
{\normalfont\small\bfseries}}
|
|||
|
\makeatother
|
|||
|
|
|||
|
% Define BibTeX command
|
|||
|
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
|
|||
|
T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
|
|||
|
|
|||
|
% Don't print section numbers
|
|||
|
% \setcounter{secnumdepth}{0}
|
|||
|
|
|||
|
|
|||
|
\setlength{\parindent}{0pt}
|
|||
|
\setlength{\parskip}{0pt plus 0.5ex}
|
|||
|
|
|||
|
\lstset{language=R}
|
|||
|
|
|||
|
% -----------------------------------------------------------------------
|
|||
|
|
|||
|
\begin{document}
|
|||
|
|
|||
|
\raggedright
|
|||
|
\footnotesize
|
|||
|
\begin{multicols*}{3}
|
|||
|
|
|||
|
|
|||
|
% multicol parameters
|
|||
|
% These lengths are set only within the two main columns
|
|||
|
%\setlength{\columnseprule}{0.25pt}
|
|||
|
\setlength{\premulticols}{1pt}
|
|||
|
\setlength{\postmulticols}{1pt}
|
|||
|
\setlength{\multicolsep}{1pt}
|
|||
|
\setlength{\columnsep}{2pt}
|
|||
|
|
|||
|
\begin{center}
|
|||
|
\Large{Statistik ZF} \\
|
|||
|
\small{Mathematik IV, zu VL von Jan Ernest} \\
|
|||
|
\small{Jannis Portmann 2020} \\
|
|||
|
{\ccbyncsa}
|
|||
|
\end{center}
|
|||
|
|
|||
|
\begin{center}
|
|||
|
\rule{\linewidth}{0.25pt}
|
|||
|
\end{center}
|
|||
|
|
|||
|
\section{Modelle für Zähldaten}
|
|||
|
\subsection{Wahrscheinlichkeitsmodelle}
|
|||
|
\begin{itemize}
|
|||
|
\item Grundraum $\Omega$ mit Elementarereignissen $\omega_i$ (z.B. Augenzahl eines Würfels)
|
|||
|
\item Ereignisse $A$, $B$, $C$, ... (Teilmenge von $\Omega$) (z.B. Kombinationen von Augenzahlen)
|
|||
|
\item Wahrscheinlichkeit für jedes Ereignis $P(A)$, $P(B)$, ...
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
\subsection{Operatoren}
|
|||
|
\begin{itemize}
|
|||
|
\item $A \cup B$ - ODER (inklusiv, "und/oder") \\
|
|||
|
\item $A \cap B$ - UND (Konjunktion) \\
|
|||
|
\item $A^c$ - NICHT (Negation) \\
|
|||
|
\item $A \backslash B = A \cap B^c$ - A UND NICHT B
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
\subsection{Axiome der Wahrscheinlichkeitsrechnug}
|
|||
|
\begin{enumerate}
|
|||
|
\item $P(A) \geq 0$ - Die Wahrscheinlichkeiten sind immer nicht-negativ
|
|||
|
\item $P(\Omega) = 1$ - Das Ereignis $\Omega$ hat Wahrscheinlichkeit eins
|
|||
|
\item $P(A \cup B) = P(A) + P(B)$ falls $A \cap B = \emptyset$ (A und B sind disjunkt), d.h. für alle Ereignisse, die sich gegenseitig ausschliessen.
|
|||
|
\end{enumerate}
|
|||
|
Daraus folgen:
|
|||
|
\begin{itemize}
|
|||
|
\item $P(A^c) = 1 - P(A)$
|
|||
|
\item $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
\subsection{Wahrscheinlichkeiten berechnen}
|
|||
|
Für diskrete Wahrscheinlichkeitsmodelle
|
|||
|
\subsubsection{Summe der Elementarereinisse (verschiedene $P(\omega_i)$)}
|
|||
|
$$P(A) = \sum_{\omega \in A} P(\{ \omega \})$$
|
|||
|
|
|||
|
\subsubsection{Laplace-Modell (gleiche $P(\omega_i)$)}
|
|||
|
\label{section:laplace}
|
|||
|
$$P(E)=\frac{g}{m}$$
|
|||
|
günstig/möglich
|
|||
|
|
|||
|
\subsection{Unabhängigkeit}
|
|||
|
$A$ und $B$ sind stochastisch unabhängig, wenn gilt:
|
|||
|
$$P(A \cap B) = P(A)P(B)$$
|
|||
|
somit können wir dies annehmen, falls wir wissen, dass $A$ und $B$ nicht kausal voneinander abhängig sind
|
|||
|
|
|||
|
\subsection{Bedingte Wahrscheinlichkeit (Abhängigkeit)}
|
|||
|
\subsubsection{Satz von Bayes}
|
|||
|
$$P(A|B)P(B)=P(B|A)P(A)=P(A \cap B)$$
|
|||
|
somit ist $P(A|B)$ nicht unbedingt $P(B|A)$\footnote{$P(A|B)$: $P(A)$ gegeben $B$}
|
|||
|
|
|||
|
\subsubsection{Gesetz der totalen Wahrscheinlichkeit}
|
|||
|
$$P(B) = \sum_{i=1}^k P(B|A_k)P(A_k)$$
|
|||
|
|
|||
|
\subsubsection{Odds}
|
|||
|
$$\mathrm{odds}(E) = \frac{P(E)}{1-P(E)} = \frac{P(E)}{P(E^c)}$$
|
|||
|
(vgl. Abschnitt \ref{section:laplace})
|
|||
|
$$\mathrm{odds}(E | A) = \frac{P(E | A)}{1-P(E|A)}$$
|
|||
|
|
|||
|
\subsubsection{Odds-Ratio}
|
|||
|
$$\mathrm{OR} = \frac{\mathrm{odds}(E|A)}{\mathrm{odds}(E|B)}$$
|
|||
|
|
|||
|
\subsection{Zufallsvariable}
|
|||
|
$$X(\omega) = x$$
|
|||
|
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{ll}
|
|||
|
$X$: & $\Omega \rightarrow \mathbb{R}$ \\
|
|||
|
& $\omega \rightarrow X(\omega)$
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
Grossbuchstabe: Funktion, Kleinbuchstabe: Realisierung
|
|||
|
|
|||
|
$$ P(X=x)=P(\{\omega; X(\omega)=x\})= \sum_{\omega;X(\omega)=x} P(\omega)$$
|
|||
|
|
|||
|
So dass $\omega = x$, also einen gewünschten Wert (z.B. Jass: $P(\mathrm{Koenig}) = P(\mathrm{Schilten-Koenig})+P(\mathrm{Schellen-Koenig})+$...
|
|||
|
|
|||
|
\subsection{Diskrete Verteilungen}
|
|||
|
\subsubsection{Kennzahlen}
|
|||
|
\textbf{Erwartungswert}
|
|||
|
$$\mathbb{E}(X) = \sum_{x \in \mathbb{W}_X} x P(X = x)$$
|
|||
|
wobei $\mathbb{W}_x$ der Wertebereich von X ist.
|
|||
|
|
|||
|
\textbf{Varianz}
|
|||
|
$$\mathrm{Var}(X) = \sum_{x \in \mathbb{W}_X}(x-\mathbb{E}(X))^2P(X=x)$$
|
|||
|
|
|||
|
\textbf{Standardabweichung}
|
|||
|
$$\sigma(X) = \sqrt{\mathrm{Var}(X)}$$
|
|||
|
|
|||
|
\subsubsection{Bernoulli-($\pi$)-Verteilung}
|
|||
|
$$P(X = 1) = \pi, P(X = 0) = 1 - \pi, 0 \leq \pi \leq 1$$
|
|||
|
Beschreibt das eintreffen bzw. nicht-eintreffen eines bestimmten Ereignisses.
|
|||
|
|
|||
|
\subsubsection{Binominalverteilung \footnote{Dabei ist $\binom{n}{x} = \frac{n!}{x!(n-x)!}$}}
|
|||
|
$$P(X = x) = \binom{n}{x} \pi^x(1 - \pi)^{n-x}, x \in \mathbb{N}_0$$
|
|||
|
Dabei ist $0 \leq \pi \leq 1$ der Erfolgsparameter der Verteilung. \\
|
|||
|
Notation: $X \sim \mathrm{Bin}(n,\pi)$ ($X$ folgt einer Binominalverteilung mit Parametern $n$ und $\pi$)
|
|||
|
|
|||
|
Zusammenhänge:
|
|||
|
\begin{itemize}
|
|||
|
\item $\mathrm{Bin}(1,\pi) = \mathrm{Bernoulli}(\pi)$
|
|||
|
\item $X_1 \sim \mathrm{Bin}(n_1,\pi); X_2 \sim \mathrm{Bin}(n_2,\pi)$ unabhängig $\Rightarrow S := X_1 + X_2$, dann $S \sim \mathrm{Bin}(n_1+n_2,\pi)$
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
% TODO: Skript S. 22, E, Var, σ von Bernoulli und Binominal
|
|||
|
|
|||
|
\subsubsection{Poisson-($\lambda$)-verteilung}
|
|||
|
$$P(X = x) = \mathrm{exp}(-\lambda)\frac{\lambda^x}{x!}, x \in \mathbb{N}_0$$
|
|||
|
Dabei sind $\mathbb{E}(X) = \lambda, \mathrm{Var}(X) = \lambda, \sigma(X) = \sqrt{\lambda}$ \\
|
|||
|
Für zwei unabhängige Poisson-Verteilungen $X \sim \mathrm{Poisson(\lambda_x)}, Y \sim \mathrm{Poisson}(\lambda_y)$ ist $X + Y \sim \mathrm{Poisson}(\lambda_x + \lambda_y)$
|
|||
|
|
|||
|
\subsubsection{Poisson-Approximation der Binomial-Verteilung}
|
|||
|
$X \sim \mathrm{Bin}(n, \pi)$ und $Y \sim \mathrm{Poisson}(\lambda)$, für kleine $\pi$ und grosse $n$ gilt:
|
|||
|
$$P(X=x)=\binom{n}{x}\pi^x(1-\pi^{n-x}) \approx P(Y = x)=\mathrm{exp}(-\lambda)\frac{\lambda^x}{x!}, x \in \mathbb{N}_0$$
|
|||
|
|
|||
|
\subsubsection{Diskrete Uniformverteilung}
|
|||
|
$$P(X = x_i) = \frac{1}{n}, i \in \mathbb{N}$$
|
|||
|
$X \sim \mathrm{Uniform}(x_i)$, alle $n$ Ereignisse $x$ sind gleich wahrscheinlich
|
|||
|
|
|||
|
\subsubsection{Hypergeometrische Verteilung}
|
|||
|
Einfluss von entfernten Ereignissen auf Wahrscheinlichkeiten von neuen Ziehungen (ohne Zurücklegen).
|
|||
|
|
|||
|
$$P(X = x)=\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$$
|
|||
|
|
|||
|
Hier sind $\mathbb{E}(X) = \frac{nm}{N}$ und $\mathrm{Var}(X)=\frac{nm(N-m)(N-n)}{N^2(N-1)}$
|
|||
|
|
|||
|
$X \sim \mathrm{Hyper}(N,n,m)$, dabei $N$ die total möglichen Ereignisse, $m$ die "Gewinne" und es wird $n$ gezogen.
|
|||
|
|
|||
|
\begin{center}
|
|||
|
\rule{.5\linewidth}{0.25pt}
|
|||
|
\end{center}
|
|||
|
|
|||
|
\section{Statistik für Zähldaten}
|
|||
|
\begin{enumerate}
|
|||
|
\item \textbf{Grundfragestellung:} Welches ist der zu den Beobachtungen plausibelste Parameterwert? Die Antwort auf diese Frage heisst (Punkt-)Schätzung.
|
|||
|
\item \textbf{Grundfragestellung:} Sind die Beobachtungen kompatibel (statistisch vereinbar) mit einem vorgegebenen Parameterwert? Die Antwort auf diese 2. Grundfrage heisst statistischer Test.
|
|||
|
\item \textbf{Grundfragestellung:} Grundfragestellung: Welche Parameterwerte sind mit den Beobachtungen kompatibel (statistisch vereinbar)? Die Antwort auf diese 3. Grundfrage heisst Vertrauensintervall. Das Vertrauensintervall ist allgemeiner und informativer als ein statistischer Test.
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
\subsection{Punktschätzung von Parametern}
|
|||
|
$\hat{X}$ bezeichnet den Schätzwert von $X$
|
|||
|
\\ \\
|
|||
|
Bei \textbf{Binominalverteilung}:
|
|||
|
\subsubsection{Momentenmehtode}
|
|||
|
Aus $\mathbb{E}(X) = n\pi \Leftrightarrow \pi = \frac{\mathbb{E}(X)}{x}$, daraus $\hat{\mathbb{E}(X)}=x$ und somit
|
|||
|
$$\hat{\pi} = \frac{x}{n}$$
|
|||
|
\subsubsection{Maximum-Likelihood}
|
|||
|
Vorgehen:
|
|||
|
\begin{itemize}
|
|||
|
\item Funktion $P$ der Wahrscheinlichkeit aufstellen
|
|||
|
\item $\log(P)$
|
|||
|
\item $\frac{\mathrm{d}P}{\mathrm{d}\pi} = 0$
|
|||
|
\item auflösen nach $\pi$
|
|||
|
\end{itemize}
|
|||
|
Dies ist für eine Binominalverteilung ebenfalls $\hat{\pi} = \frac{x}{n}$
|
|||
|
|
|||
|
\subsection{Aufbau statistischer Test}
|
|||
|
$P(X \geq c)$ für verschiedene $c$
|
|||
|
\begin{enumerate}
|
|||
|
\item Modell $X$ erstellen
|
|||
|
\item Nullhypothese \\
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{ll}
|
|||
|
$H_0$: & $\pi = \pi_0$
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
und Alternativhypothese
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{ll}
|
|||
|
$H_A$: & $\pi \neq \pi_0$ (zweiseitig) \\
|
|||
|
& $\pi > \pi_0$ (einseitig nach oben) \\
|
|||
|
& $\pi < \pi_0$ (einseitig nach unten)
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
oft ist $H_0: \pi = 1/2$ (= reiner Zufall). Man testet also gegen Zufall.
|
|||
|
\item Teststatistik $T$ (Anzahl treffer bei $n$ Versuchen), Verteilung unter $H_0: T \sim \mathrm{Bin}(n,\pi_0)^3$
|
|||
|
\item Festlegen von Signifikanzniveau $\alpha$ (meist $\alpha = 0.05$ oder $\alpha = 0.01$)
|
|||
|
\item Bestimmung Verwerfungsbereich
|
|||
|
$$K = \begin{cases}
|
|||
|
[0,c_u] \cup [c_0,n] & H_A: \pi \neq \pi_0 \\ [c,n] & H_A: \pi > \pi_0 \\ [0,c] & H_A: \pi < \pi_0
|
|||
|
\end{cases}$$
|
|||
|
\item Testentscheid: Ist $t \in K$? Falls ja wird $H_0$ verworfen, falls nicht wird sie als korrekt angenommen\footnote{Achtung: Das heisst nicht, dass $H_0$ gültig ist! (Falsifizierbarkeit)}
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
\subsubsection{Fehler 1. und 2. Art}
|
|||
|
\label{sec:fehler12}
|
|||
|
\begin{enumerate}
|
|||
|
\item Art: Fälschliches Verwerfen von $H_0$, obwohl $H_0$ richtig ist.
|
|||
|
\item Art: Fälschliches Beibehalten von $H_0$, obwohl $H_A$ zutrifft.
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
$$P(\mathrm{Fehler \; 1. \; Art}) = P_{H_0}(X \in K)\leq \alpha$$
|
|||
|
Fehler 1. Art soll möglichst vermieden werden!
|
|||
|
|
|||
|
\subsubsection{Macht (Power)}
|
|||
|
\label{sec:macht}
|
|||
|
$$\mathrm{Macht}:=1-P(\mathrm{Fehler \; 2. \; Art}) = P_{H_A} (X \in K)$$
|
|||
|
Idee: Wie gross muss eine Stichprobe sein, damit mit einer bestimmten Macht $\beta=x$ eine Hypothese bewiesen werden kann auf Signifikanzniveau $\alpha$?
|
|||
|
|
|||
|
\subsubsection{P-Wert}
|
|||
|
Der P-Wert ist ein Wert zwischen 0 und 1, der angibt, wie gut Nullhypothese und Daten zusammenpassen.
|
|||
|
|
|||
|
\subsubsection{Vertrauensintervall}
|
|||
|
\label{sec:vertrauensintervall}
|
|||
|
$$I:=\{\pi_0;\; \mathrm{Nullhypothese} \; H_0:\pi = \pi_0 \mathrm{wird \; beibehalten}\}$$
|
|||
|
|
|||
|
$$P_\pi(\pi \in I(X) \gtrapprox 1-\alpha)$$
|
|||
|
|
|||
|
\begin{center}
|
|||
|
\rule{.5\linewidth}{0.25pt}
|
|||
|
\end{center}
|
|||
|
|
|||
|
\section{Modelle und Statistik für Zähldaten}
|
|||
|
\subsection{Deskriptive Statistik}
|
|||
|
\subsubsection{Kennzahlen}
|
|||
|
\textbf{Arithmetisches Mittel}
|
|||
|
$$\bar{x} = \frac{1}{n}\sum_{i=1}^nx_i$$
|
|||
|
|
|||
|
\textbf{Empirische Standardabweichung}
|
|||
|
$$s_x = \sqrt{\mathrm{Var}} = \sqrt{\frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})^2}$$
|
|||
|
|
|||
|
\textbf{Quantile} \\
|
|||
|
$\alpha$-Quantil \\
|
|||
|
"Wert $x$ bei dem $\alpha \cdot 100 \%$-Werte kleiner als $x$ sind"
|
|||
|
|
|||
|
\subsubsection{Kovarianz und Korrelation}
|
|||
|
Gemeinsame Verteilung von zwei Zufallsvariablen $X$ und $Y$ \\
|
|||
|
\textbf{Kovarianz}
|
|||
|
$$\mathrm{Cov}(X,Y)=\mathbb{E}[(X-\mu_x)(Y-\mu_y)] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$
|
|||
|
es gilt somit auch
|
|||
|
$$\mathrm{Cov}(X,X) = \mathrm{Var}(X)$$
|
|||
|
|
|||
|
\textbf{Korrelation}
|
|||
|
$$\mathrm{Cor}(X,Y)=\rho_{XY} = \frac{\mathrm{Cov}(X,Y)}{\sigma_X\sigma_Y}$$
|
|||
|
wobei $\rho_{XY} \in [-1,1]$ \\
|
|||
|
Falls $X, Y$ unabhängig $\mathrm{Cor}(X,Y) = 0$.\footnote{Aber dies bedeutet nicht, dass falls $\mathrm{Cor}(X,Y) = 0$, $X$ und $Y$ dann unabhängig sind!}
|
|||
|
|
|||
|
\textbf{Empirische Korrelation}
|
|||
|
$$r = \frac{s_{xy}}{s_xs_y}$$
|
|||
|
wobei $s_{xy} = \frac{\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})}{n-1}$
|
|||
|
|
|||
|
\subsubsection{Grafische Methoden}
|
|||
|
\textbf{Histogramme} \\
|
|||
|
Einteilung in Klassen, auftragen der Beobachtugen je Klasse in Balkendiagramm
|
|||
|
|
|||
|
\textbf{Boxplot} \\
|
|||
|
Rechteck, vom 75\%- und 25\%-Quantil begrenzt
|
|||
|
\begin{figure}[H]
|
|||
|
\centering
|
|||
|
\includegraphics[width=.2\textwidth]{boxplot.png}
|
|||
|
\caption{Beispiel Boxplot (IQR = Interquartile-Range)}
|
|||
|
\label{fig:boxplot}
|
|||
|
\end{figure}
|
|||
|
|
|||
|
\textbf{Streudiagramm (Scatter-Plot)} \\
|
|||
|
Auftragen der Daten $(x_n,y_n)$
|
|||
|
|
|||
|
\subsection{Stetige Zufallsvariablen und Wahrscheinlichkeitsverteilungen}
|
|||
|
Eine Zufallsvariable $X$ heisst stetig, falls deren Wertebereich $\mathbb{W}_X$ stetig ist \\
|
|||
|
Da Punktverteilung
|
|||
|
$$P(X=x) = 0, \forall x \in \mathbb{W}_X, \footnote{Da in jedem kontunuierlichen Intervall $\infty$ Werte sind}$$
|
|||
|
benötigen wir
|
|||
|
$$P(X \in (a,b]) = P(a < X \leq b)$$
|
|||
|
\textbf{Kumulative Verteilungsfunktion}
|
|||
|
$$F(x) = P(X \leq x)$$
|
|||
|
|
|||
|
\subsubsection{(Wahrscheinlichkeits-)Dichte)}
|
|||
|
$$f(x) = \dot{F}(x) \Longleftrightarrow F(x) = \int_{-\infty}^xf(y)\mathrm{d}y$$
|
|||
|
|
|||
|
\subsection{Kennzahlen von stetigen Verteilungen}
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{rl}
|
|||
|
$\mathbb{E}(X) =$ & $\int_{-\infty}^{\infty}xf(x)\mathrm{d}x$ \\
|
|||
|
Var$(X) =$ & $\mathbb{E}((X-\mathbb{E}(X))^2) = \int_{-\infty}^{\infty}(x-\mathbb{E}(X))^2f(x)\mathrm{d}x$ \\
|
|||
|
$\sigma(X) =$ & $\sqrt{\mathrm{Var}(X)}$
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
|
|||
|
\textbf{Qunatile}
|
|||
|
$$P(X \leq q(\alpha)) = \alpha$$
|
|||
|
$q(\alpha)$ ist der Punkt, an dem die Fläche unter der Dichtefunktion $f(x)$ von $-\infty$ bis $q(\alpha)$ gleich $\alpha$ ist. (z.B. beim Median ($\alpha = 50\%$) sind die Flächen darunter und darüber gleich gross)
|
|||
|
|
|||
|
\subsection{Stetige Verteilungen}
|
|||
|
\subsubsection{Uniforme Verteilung}
|
|||
|
$X \sim \mathrm{Uniform}([a,b]), \mathbb{W}_X = [a,b]$
|
|||
|
$$f(x) = \begin{cases}
|
|||
|
\frac{1}{b-a}, \; \mathrm{falls} \; a \leq x \leq b \\
|
|||
|
0, \;\;\;\;\;\;\, \mathrm{sonst} %uglyAF
|
|||
|
\end{cases}$$
|
|||
|
somit ist die kumulative Verteilung
|
|||
|
$$F(x) = \begin{cases}
|
|||
|
0, \;\;\;\;\;\;\, \mathrm{falls} \; x < a \\
|
|||
|
\frac{x-a}{b-a}, \; \mathrm{falls} \; a \leq x \leq b \\
|
|||
|
1, \;\;\;\;\;\;\, \mathrm{falls} \; x > b
|
|||
|
\end{cases}$$
|
|||
|
\textbf{Kennzahlen}
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{rl}
|
|||
|
$\mathbb{E}(X) =$ & $\frac{a+b}{2}x$ \\
|
|||
|
Var$(X) =$ & $\frac{(b-a)^2}{12}$ \\
|
|||
|
$\sigma_X =$ & $\frac{b-a}{\sqrt{12}}$
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
|
|||
|
\subsubsection{Exponential-Verteilung}
|
|||
|
$X \sim \mathrm{Exp}(\lambda), \mathbb{W}_X = [0,\infty), \lambda \in \mathbb{R}^+$
|
|||
|
$$f(x) = \begin{cases}
|
|||
|
\lambda e^{-\lambda x}, \; \mathrm{falls} \; x \geq 0 \\
|
|||
|
0, \;\;\;\;\;\;\;\;\;\; \mathrm{sonst} %uglyAF
|
|||
|
\end{cases}$$
|
|||
|
also
|
|||
|
$$F(x) = \begin{cases}
|
|||
|
1 - e^{-\lambda x}, \; \mathrm{falls} \; x \geq 0 \\
|
|||
|
0, \;\;\;\;\;\;\;\;\;\;\;\;\;\, \mathrm{falls} \; x < 0
|
|||
|
\end{cases}$$
|
|||
|
|
|||
|
\textbf{Kennzahlen}
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{rl}
|
|||
|
$\mathbb{E}(X) =$ & $\frac{1}{\lambda}x$ \\
|
|||
|
Var$(X) =$ & $\frac{1}{\lambda^2}$ \\
|
|||
|
$\sigma_X =$ & $\frac{1}{\lambda}$
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
|
|||
|
\subsubsection{Normalverteilung (Gauss'sche-Verteilung)}
|
|||
|
$X \sim \mathcal{N}(\mu,\sigma^2), \mathbb{W}_X = \mathbb{R}, \mu \in \mathbb{R} \; \mathrm{und} \; \sigma \in \mathbb{R}^+$
|
|||
|
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}\mathrm{exp}\bigg(-\frac{(x-\mu)^2}{2\sigma^2}\bigg)$$
|
|||
|
$$F(x) \Rightarrow \mathrm{Tabelle!}$$
|
|||
|
\textbf{Kennzahlen}
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{rl}
|
|||
|
$\mathbb{E}(X) =$ & $\mu$ \\
|
|||
|
Var$(X) =$ & $\sigma^2$ \\
|
|||
|
$\sigma_X =$ & $\sigma$
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
|
|||
|
\subsubsection{Standard-Normalverteilung}
|
|||
|
$X \sim \mathcal{N}(0,1), \mathbb{W}_X = \mathbb{R}, \mu = 0 \; \mathrm{und} \; \sigma = 1$
|
|||
|
$$\varphi (x) = \frac{1}{\sqrt{2\pi}}\mathrm{exp}\bigg(-\frac{x^2}{2}\bigg)$$
|
|||
|
$$\Phi(x) = \int_{-\infty}^x\varphi(y)\mathrm{d}y$$
|
|||
|
|
|||
|
$$\Phi(-c) = P(X \leq -c) = P(X \geq c) = 1-P(X \leq c) = 1 - \Phi(c)$$
|
|||
|
|
|||
|
\subsection{Funktionen einer Zufallsvariable}
|
|||
|
Sei $g: \mathbb{R} \rightarrow \mathbb{R}$ und $X$ eine Zufallsvariable, so ist
|
|||
|
$$Y = g(X)$$
|
|||
|
eine Transformation.
|
|||
|
|
|||
|
$$\mathbb{E}(Y) = \mathbb{E}(g(X)) = \int_{-\infty}^{\infty}g(x)f_X(x) \mathrm{d}x$$
|
|||
|
|
|||
|
\subsubsection{Lineare Transformation}
|
|||
|
Sei $X \sim \mathcal{N}(\sigma,\omega^2)$ und $Y = a+bX$ \\
|
|||
|
dann sind
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{rl}
|
|||
|
$\mathbb{E}(Y) =$ & $a +b\mathbb{E}(X)$ \\
|
|||
|
Var$(Y) =$ & $b^2 \cdot \mathrm{Var}(X)$ \\
|
|||
|
$\sigma_Y =$ & $b \cdot \sqrt{\mathrm{Var}(X)}$ \\
|
|||
|
$q_Y(\alpha) =$ & $a+b\cdot q_X(\alpha)$
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
|
|||
|
\subsubsection{Standardisieren einer Zufallsvariable}
|
|||
|
Überführen von $X$ in eine \textit{Standard-Normalverteilung} $(\mathbb{E} = 0, \sigma = 1)$
|
|||
|
$$Z = g(X) = \frac{X-\mathbb{E}(X)}{\sigma_X} = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$$
|
|||
|
|
|||
|
\subsubsection{Lognormal-Verteilung}
|
|||
|
Sei $Y \sim \mathcal{N}(\mu,\sigma^2)$ dann soll $X = \mathrm{exp}(Y)$ mit $\mu \in \mathbb{R}$ und $\sigma \in \mathbb{R}^+$
|
|||
|
$$\mathbb{E}(X) = \mathrm{exp}(\mu + \frac{\sigma^2}{2}) > \mathrm{exp}(\mathbb{E}(Y))$$
|
|||
|
|
|||
|
\subsubsection{Berechnung von Momenten}
|
|||
|
Das $k$-te Moment ist gegeben als
|
|||
|
$$m_k = \mathbb{E}(X^k)$$
|
|||
|
also z.B.
|
|||
|
$$m_2 = \mathbb{E}(X^2) = \int_{-\infty}^\infty x^2 f(x) \mathrm{d}x$$
|
|||
|
|
|||
|
Verschiebungssatz für die Varianz:
|
|||
|
$$\mathrm{Var}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$
|
|||
|
|
|||
|
\subsection{Überprüfen der Normalverteilungs-Annahme}
|
|||
|
\subsubsection{Q-Q Plot (Quantil-Quantil Plot)}
|
|||
|
Man plottet die empirischen Quantile gegen die theoretischen Quantile der Modell-Verteilung. Die Punkte sollten ungefähr auf der Winkelhalbierenden $y = f(x) = x$ liegen.
|
|||
|
|
|||
|
\subsubsection{Normal-Plot}
|
|||
|
\label{sec:normalplot}
|
|||
|
Für Klassen von Verteilungen, z.B. Klasse der Normalverteilungen mit verschiedenen $\mu, \sigma$. \\
|
|||
|
Sei $X \sim \mathcal{N}(\mu, \sigma^2)$, dann sind die Quantile von X
|
|||
|
$$q(\alpha) = \mu + \sigma \Phi^{-1}(\alpha)$$
|
|||
|
Ein \textit{Q-Q Plot} bei dem die Modell-Verteilung gleich $\mathcal{N}(0,1)$ ist, heisst Normal-Plot.
|
|||
|
|
|||
|
\subsection{Funktionen von mehreren Zufallsvariablen}
|
|||
|
Statt einer Zufallsvariale $X$ und deren $n$ unabhängigen Realisierungen $x_1, x_2, ... , x_n$, nimmt man oft $X_1, X_2, ... , X_n$. Somit wird $y = g(x_1, x_2, ... , x_n)$ zu einer Funktion von Zufallsvariablen
|
|||
|
$$Y = g(X_1, X_2, ... , X_n)$$
|
|||
|
|
|||
|
\subsubsection{Unabhängigkeit und i.i.d. Annahme}
|
|||
|
Unabhängig heisst, dass es keine gemeinsamen Prozesse gibt, die den Ausgang beeinflussen. \\
|
|||
|
\textit{Notation}:
|
|||
|
$$X_1,X_2,...,X_n \; \mathrm{i.i.d}$$
|
|||
|
wobei \textit{i.i.d} für "independent, identically distributed" steht. \\
|
|||
|
Es gilt dann immer
|
|||
|
$$\mathbb{E}(X_1 + X_2) = \mathbb{E}(X_1) + \mathbb{E}(X_2)$$
|
|||
|
wenn $X_1,X_2$ unabhängig, auch
|
|||
|
$$\mathrm{Var}(X_1 + X_2) = \mathrm{Var}(X_1) + \mathrm{Var}(X_2),$$
|
|||
|
für nicht unabhängig
|
|||
|
$$\mathrm{Var}(aX_1 + bX_2) = a^2\mathrm{Var}(X_1) + b^2 \mathrm{Var}(X_2) + 2ab\mathrm{Cov}(X_1,X_2).$$
|
|||
|
|
|||
|
\subsubsection{Gesetz der grossen Zahlen und $\sqrt{n}$-Gesetz}
|
|||
|
Sei $X_1, X_2, ..., X_n \; \mathrm{i.i.d} \sim \mathrm{kumulative \; Verteilungsfunktion} \; F$, dann sind
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{rcl}
|
|||
|
$\mathbb{E}(\bar{X_n})$ & $=$ & $\mu$ \\
|
|||
|
Var$(\bar{X_n})$ & $=$ & $\frac{\sigma_X^2}{n}$ \\
|
|||
|
$\sigma(\bar{X_n})$ & $=$ & $\frac{\sigma_X}{\sqrt{n}}$
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
Somit sind für eine doppelte Genauigkeit viermal soviele Messwerte nötig. \\
|
|||
|
Standardabweichung von $X_n$ ist der \textit{Standardfehler} des Arithmetischen Mittels.
|
|||
|
$$\bar{X_n} \rightarrow \mu(n\rightarrow\infty)$$
|
|||
|
|
|||
|
\subsubsection{Zentraler Grenzwertsatz}
|
|||
|
Sei $X_1, X_2, ..., X_n \; \mathrm{i.i.d}$, dann gilt
|
|||
|
$$\bar{X_n} = \mathcal{N}(\mu,\frac{\sigma^2_X}{n})$$
|
|||
|
und daraus folgt für die Summe $\sum_{i=1}^nX_i$
|
|||
|
$$S_X \approx \mathcal{N}(n\mu,n\sigma^2).$$
|
|||
|
|
|||
|
Aus
|
|||
|
$$Z_n = \frac{\sqrt{n}(\bar{X_n}-\mu)}{\sigma_X} \sim \mathcal{N}(0,1)$$
|
|||
|
folgt
|
|||
|
$$\forall x: \lim_{n\rightarrow\infty} P(Z_n \leq x) = \Phi(x)$$
|
|||
|
|
|||
|
\subsubsection{Verletzung der Unabhängigkeit}
|
|||
|
Sei $X_1, X_2, ..., X_n \; \neg \; \mathrm{i.i.d}$
|
|||
|
$$\mathbb{E}(\bar{X_n}) = \mu$$
|
|||
|
$$\mathrm{Var}(\bar{X_n}) = \frac{\sigma_X^2}{n}\bigg(1+\frac{1}{n}\sum_{1\leq i \leq j \leq n} \rho_{X_i X_j}\bigg)$$
|
|||
|
mit $\rho_{X_i X_j}$ die Korrelation zwischen $X_i, X_j$ \\
|
|||
|
Die Unabhängigkeit führt dazu, dass die Genauigkeit des arithmetischen Mittels beeinflusst wird!
|
|||
|
|
|||
|
\subsection{Statisitk für eine Stichprobe}
|
|||
|
% Wasn't able to fit it into the third-columns
|
|||
|
Siehe \textit{Fig. \ref{fig:tests}} im \hyperref[sec:anhang]{Anhang}.
|
|||
|
|
|||
|
\subsubsection{Punktschätzung}
|
|||
|
Betrachtung von Daten $x_1, x_2, ...,x_n$ als Realisierungen von $X_1, X_2, ..., X_n$ i.i.d. \\
|
|||
|
Wenn $\mathbb{E}(X_i) = \mu$ und $\mathrm{Var}(X_i) = \sigma_X^2$ gesucht:
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{rcl}
|
|||
|
$\hat{\mu}$ & $=$ & $\displaystyle\frac{1}{n}\sum_{i=1}^n X_i = X_n$ \\
|
|||
|
$\hat{\sigma_X}^2$ & $=$ & $\displaystyle\frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X_n})^2$
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
|
|||
|
\subsubsection{z-Test ($\sigma_X$ bekannt)}
|
|||
|
\begin{enumerate}
|
|||
|
\item \textbf{Modell}: $X_i$ ist eine kontunuierliche Messgrösse und Annahme $X_1, X_2, ..., X_n \; \mathrm{i.i.d.} \; \mathcal{N}(\mu, \sigma_X^2)$
|
|||
|
\item \textbf{Nullhypothese}:
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{cll}
|
|||
|
& $H_0:$ & $\mu = \mu_0$
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
\textbf{Alternativhypothese}:
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{clll}
|
|||
|
& $H_A:$ & $\mu \neq \mu_0$ & zweiseitig \\
|
|||
|
oder & $H_A:$ & $\mu > \mu_0$ & einseitig \\
|
|||
|
oder & $H_A:$ & $\mu < \mu_0$ & einseitig \\
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
\item \textbf{Teststatistik}:
|
|||
|
$$Z = \frac{(\bar{X_n} - \mu_0)}{\sigma_{X_n}} = \frac{\sqrt{n}(\bar{X_n} - \mu_0)}{\sigma_X} = \frac{\mathrm{beobachtet}-\mathrm{erwartet}}{\mathrm{Standardfehler}}$$
|
|||
|
Verteilung der Teststatistik unter $H_0: Z \sim \mathcal{N}(0,1)$
|
|||
|
\item \textbf{Signifikanzniveau}: $\alpha$
|
|||
|
\item \textbf{Verwerfungsbereich für die Teststatistik}:\\
|
|||
|
$$K=\begin{cases}
|
|||
|
(-\infty,-\Phi^{-1}(1-\frac{\alpha}{2}]\cup [\Phi^{-1}(1-\frac{\alpha}{2}),\infty), \quad \, \mathrm{bei} \; H_A: \mu \neq \mu_0 \\
|
|||
|
(-\infty,-\Phi^{-1}(1-\frac{\alpha}{2}], \qquad\qquad\qquad\qquad\qquad\kern .025em \mathrm{bei} \; H_A: \mu < \mu_0 \\
|
|||
|
[\Phi^{-1}(1-\frac{\alpha}{2}),\infty), \qquad\qquad\qquad\qquad\qquad\quad\kern 0.25em \mathrm{bei} \; H_A: \mu > \mu_0
|
|||
|
\end{cases}$$
|
|||
|
\item \textbf{Testentscheid}:\\
|
|||
|
Überprüfen ob der beobachtete Wert der Teststatistik im Verwerfungsbereich $K$ liegt.
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
\subsubsection{Fehler 1./2. Art und Macht}
|
|||
|
Es gilt wie in \textit{Kapitel \ref{sec:fehler12}} und \textit{\ref{sec:macht}}. \\
|
|||
|
$$P_{\mu_0}(T \in K) = \alpha$$
|
|||
|
$$P_\mu(T \in K) = \mathrm{Macht}(\mu)$$
|
|||
|
|
|||
|
\subsubsection{t-Test ($\sigma_X$ unbekannt)}
|
|||
|
\begin{enumerate}
|
|||
|
\item \textbf{Modell}: $X_i$ ist eine kontinuierliche Messgrösse und Annahme $X_1, X_2, ..., X_n \; \mathrm{i.i.d.} \; \mathcal{N}(\mu, \sigma_X^2)$
|
|||
|
\item \textbf{Nullhypothese}:
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{cll}
|
|||
|
& $H_0:$ & $\mu = \mu_0$
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
\textbf{Alternativhypothese}:
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{clll}
|
|||
|
& $H_A:$ & $\mu \neq \mu_0$ & zweiseitig \\
|
|||
|
oder & $H_A:$ & $\mu > \mu_0$ & einseitig \\
|
|||
|
oder & $H_A:$ & $\mu < \mu_0$ & einseitig \\
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
\item \textbf{Teststatistik}:
|
|||
|
$$\hat{\sigma_X} = \sqrt{\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X_n})^2}$$
|
|||
|
$$T = \frac{\sqrt{n}(\bar{X_n} - \mu_0)}{\hat{\sigma_X}} = \frac{\mathrm{beobachtet}-\mathrm{erwartet}}{\mathrm{geschätzter \; Standardfehler}}$$
|
|||
|
Verteilung der Teststatistik unter $H_0: T \sim t_{n-1}$
|
|||
|
\item \textbf{Signifikanzniveau}: $\alpha$
|
|||
|
\item \textbf{Verwerfungsbereich für die Teststatistik}:\\
|
|||
|
$$K=\begin{cases}
|
|||
|
(-\infty,-t_{n-1;1-\frac{\alpha}{2}}] \cup [t_{n-1;1-\frac{\alpha}{2}},\infty), \quad \;\; \mathrm{bei} \; H_A: \mu \neq \mu_0 \\
|
|||
|
(-\infty,-t_{n-1;1-\frac{\alpha}{2}}], \qquad\qquad\qquad\qquad\kern 1.6em \mathrm{bei} \; H_A: \mu < \mu_0 \\
|
|||
|
[t_{n-1;1-\frac{\alpha}{2}},\infty), \qquad\qquad\qquad\qquad\qquad\quad\kern 0.25em \mathrm{bei} \; H_A: \mu > \mu_0
|
|||
|
\end{cases}$$
|
|||
|
\item \textbf{Testentscheid}:\\
|
|||
|
Überprüfen ob der beobachtete Wert der Teststatistik im Verwerfungsbereich $K$ liegt.
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
\subsubsection{P-Wert des \textit{t-Tests}}
|
|||
|
\label{sec:pval}
|
|||
|
$$\mathrm{P-Wert} = P(|T| > |t|) = 2\bigg(1-F_{t_{n-1}}\bigg(\frac{\sqrt{n}|\bar{x_n}-\mu_0|}{\hat{\sigma_X}}\bigg)\bigg)$$
|
|||
|
wobei $F_{t_{n-a}}$ die kumulative Verteilungsfunktion der t-Verteilung mit $n-1$ Freiheitsgraden ist ($F_{t_{n-1}}(t) = P(T \leq t),T \sim t_{n-1}$)
|
|||
|
|
|||
|
\subsubsection{Vertrauensintervall für $\mu$}
|
|||
|
Vgl. auch \ref{sec:vertrauensintervall}\\
|
|||
|
Aus
|
|||
|
$$\mu_0 \leq \bar{x_n}+\frac{\hat{\sigma_X}\cdot t_{n-1;1-\frac{\alpha}{2}}}{\sqrt{n}} \mathrm{\; und \;} \mu_0 \geq \bar{x_n}-\frac{\hat{\sigma_X}\cdot t_{n-1;1-\frac{\alpha}{2}}}{\sqrt{n}}$$
|
|||
|
folgt das Intervall
|
|||
|
$$I = \bigg[\bar{x_n} - t_{n-1;1-\frac{\alpha}{2}}\frac{\hat{\sigma_X}}{\sqrt{n}},\bar{x_n} + t_{n-1;1-\frac{\alpha}{2}}\frac{\hat{\sigma_X}}{\sqrt{n}}\bigg]$$
|
|||
|
|
|||
|
\subsubsection{Vorzeichentest}
|
|||
|
\begin{enumerate}
|
|||
|
\item \textbf{Modell}: $X_1, X_2, ..., X_n \; \mathrm{i.i.d.}$ wobei $X_i$ eine beliebige Verteilung hat \\
|
|||
|
\item \textbf{Nullhypothese}:
|
|||
|
$$H_0: \mu = \mu_0 \mathrm{\; (\mu \; ist \; der \; Median)}$$
|
|||
|
\textbf{Alternativhypothese}:
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{clll}
|
|||
|
& $H_A:$ & $\mu \neq \mu_0$ & zweiseitig \\
|
|||
|
oder & $H_A:$ & $\mu > \mu_0$ & einseitig \\
|
|||
|
oder & $H_A:$ & $\mu < \mu_0$ & einseitig \\
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
\item \textbf{Teststatistik}: \\
|
|||
|
$V$: Anzahl $X_i$ mit $X_i > \mu_0$ \\
|
|||
|
Verteilung der Teststatistik unter $H_0: V \sim \mathrm{Bin}(n,\pi_0)$, mit $\pi_0 = 0.5$
|
|||
|
\item \textbf{Signifikanzniveau}: $\alpha$ \\
|
|||
|
\item \textbf{Verwerfungsbereich für die Teststatistik}: \\
|
|||
|
$$K=\begin{cases}
|
|||
|
[0,c_u] \cup [c_0,n], \quad \;\; \mathrm{bei} \; H_A: \mu \neq \mu_0 \\
|
|||
|
[0,c_u], \qquad\qquad\kern 1.44em \mathrm{bei} \; H_A: \mu < \mu_0 \\
|
|||
|
[c_0,n], \qquad\qquad\quad\kern 0.46em \mathrm{bei} \; H_A: \mu > \mu_0
|
|||
|
\end{cases}$$
|
|||
|
\item \textbf{Testentscheid}: \\
|
|||
|
Überprüfen ob der beobachtete Wert der Teststatistik im Verwerfungsbereich $K$ liegt.
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
\subsubsection{Wilcoxon-Test}
|
|||
|
Voraussetzung: Realisierungen von $X_1, X_2, ..., X_n \; \mathrm{i.i.d.}$, stetig und symetrisch bezgl. $\mu = \mathbb{E}(X_i)$ \\
|
|||
|
Für Berechnung benutze R (\ref{sec:wilcoxon})
|
|||
|
|
|||
|
\subsection{Statisitk für zwei Stichproben}
|
|||
|
\subsubsection{Gepaarte Stichprobe}
|
|||
|
% TODO
|
|||
|
|
|||
|
\begin{center}
|
|||
|
\rule{.5\linewidth}{0.25pt}
|
|||
|
\end{center}
|
|||
|
|
|||
|
\section{Regression}
|
|||
|
\subsection{Einfache Lineare Regression}
|
|||
|
\subsubsection{Modell}
|
|||
|
\label{sec:regmod}
|
|||
|
$$y_i = \beta_0 + \beta_1x_i+E_i,$$
|
|||
|
wobei $i \in \mathbb{N} \leq n$, $E_i \sim \mathcal{N}(0,\sigma^2)$, $E_1,...E_n$ i.i.d., $\mathbb{E}(E_i) = 0$ und $\mathrm{Var}(E_i) = \sigma^2$ \\
|
|||
|
$Y$ bezeichnen wir als \textbf{Zielvariable (response variable)}, $x$ als \textbf{erklärende Variable (explanatory/predictor variable)} oder \textbf{Co-Variable (covariate)} und $E_i$ als Störfaktor (zufällig)
|
|||
|
|
|||
|
\subsubsection{Parameterschätzung}
|
|||
|
Das Modell aus \ref{sec:regmod} mit der \textit{Methode der kleinsten Quadrate} liefert
|
|||
|
$$\hat{\beta_0},\hat{\beta_1} \mathrm{\; Minimierung \; von \;} \sum_{i=1}^n(Y_i-(\beta_0+\beta_1x_i))^2,$$
|
|||
|
daraus ergibt sich
|
|||
|
$$\hat{\beta_1} = \frac{\sum_{i=1}^n(Y_i-\bar{Y_n})(x_i-\bar{x_n})}{\sum_{i=1}^n(x_i-\bar{x_n})^2}$$
|
|||
|
und
|
|||
|
$$\hat{\beta_0} = \bar{Y_n} - \hat{\beta_1}\bar{x_n}$$
|
|||
|
dabei gilt
|
|||
|
$$\mathbb{E}(\hat{\beta_0}) = \beta_0, \mathbb{E}(\hat{\beta_1}) = \beta_1$$
|
|||
|
Für den \textbf{Standardfehler} gilt
|
|||
|
$$s(\hat{\beta_1}) = \frac{\sigma}{\sqrt{\sum_{i=1}^n(x_i-\bar{x_n})^2}}.$$
|
|||
|
Die \textbf{Residuen}
|
|||
|
$$R_i = Y_i - (\hat{\beta_0}+\hat{\beta_1)x_i}, i \in \{1,2,...,n\}$$
|
|||
|
somit approximieren wir $E_i \approx R_i$ und daraus
|
|||
|
$$\hat{\sigma}^2 = \frac{1}{n-2}\sum_{i=1}^nR_i^2$$
|
|||
|
|
|||
|
\subsection{Tests und Vertrauensintervalle der einfachen linearen Regression}
|
|||
|
\subsubsection{t-Test in der Regression}
|
|||
|
\begin{enumerate}
|
|||
|
\item \textbf{Modell}: \\
|
|||
|
$$Y_i = \beta_0 + \beta_1x_i + E_i$$ \\
|
|||
|
$$E_1, E_2, ..., E_n \; \mathrm{i.i.d.} \; \mathcal{N}(0, \sigma_X^2)$$
|
|||
|
\item \textbf{Nullhypothese}:
|
|||
|
$$H_0: \beta = 0$$
|
|||
|
\textbf{Alternativhypothese}:
|
|||
|
$$H_A: \beta_1 \neq 0$$
|
|||
|
\item \textbf{Teststatistik}:
|
|||
|
$$T = \frac{\hat{\beta_1}-0}{\hat{s}(\hat{\beta_1})} = \frac{\mathrm{beobachtet}-\mathrm{erwartet}}{\mathrm{geschätzter \; Standardfehler}}$$
|
|||
|
Dabei ist $\hat{s}$ der geschätzte Standardfehler $\sqrt{\widehat{\mathrm{Var}}(\hat{\beta_1})} = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n(x_i-\bar{x_n})^2}}$
|
|||
|
Verteilung der Teststatistik unter $H_0: T \sim t_{n-2}$
|
|||
|
\item \textbf{Signifikanzniveau}: $\alpha$
|
|||
|
\item \textbf{Verwerfungsbereich für die Teststatistik}:\\
|
|||
|
$$K=(-\infty,-t_{n-2;1-\frac{\alpha}{2}}] \cup [t_{n-2;1-\frac{\alpha}{2}},\infty)$$
|
|||
|
\item \textbf{Testentscheid}:\\
|
|||
|
Überprüfen ob der beobachtete Wert der Teststatistik im Verwerfungsbereich $K$ liegt.
|
|||
|
\end{enumerate}
|
|||
|
Analog funktioniert auch ein \textit{t-Test} für $H_0: \beta_0 = 0, H_A: \beta_0 \neq 0$
|
|||
|
|
|||
|
\subsubsection{P-Wert}
|
|||
|
Vgl. dazu \ref{sec:pval}, jedoch anstatt $n-1$ sind es hier $n-2$ Freiheitsgrade. Der P-Wert der Regression wird meist nicht von Hand berechnet (vgl. \ref{sec:rreg}).
|
|||
|
|
|||
|
\subsubsection{Vertrauensintervalle}
|
|||
|
Die zweiseitigen Vertrauensintervalle für $\beta_i (i = 0, 1)$ zum Niveau $1 - \alpha$ sind gegeben durch
|
|||
|
$$[\hat{\beta_i}-\hat{s}(\hat{\beta_i})t_{n-2;1-\frac{\alpha}{2}},\hat{\beta_i}+\hat{s}(\hat{\beta_i})t_{n-2;1-\frac{\alpha}{2}}]$$
|
|||
|
Für grosse $n$ approximieren wir $t_{n-2;1-\frac{\alpha}{2}}$ mit $\Phi^{-1}(1-\frac{\alpha}{2})$, somit für 95\%-Vertruaensintervalle
|
|||
|
$$[\hat{\beta_i}-2\hat{s}(\hat{\beta_i}),\hat{\beta_i}+2\hat{s}(\hat{\beta_i})]$$
|
|||
|
|
|||
|
\subsubsection{Bestimmtheitsmass $R^2$}
|
|||
|
\label{sec:r2}
|
|||
|
Sei $\hat{y_i} = \hat{\beta_0}+\hat{\beta_1}x_i$ der Wert auf der Regressionsgerade am Punkt $x_i$, dann gilt
|
|||
|
$$\underbrace{\sum_{i=1}^n(y_i-\bar{y})^2}_{SS_Y}=\underbrace{\sum_{i=1}^n(y_i-\hat{y_i})^2}_{SS_E}+\underbrace{\sum_{i=1}^n(\hat{y_i}-\bar{y})^2}_{SS_R}$$
|
|||
|
wobei
|
|||
|
\begin{itemize}
|
|||
|
\item $SS_Y$: die totale Variation der Zielvariablen (ohne Einfluss der erklärenden Variablen $x$)
|
|||
|
\item $SS_E$: die Variation des Fehlers (Residuen-Quadratsumme)
|
|||
|
\item $SS_R$: die Variation, welche durch die Regression erklärt wird (Einfluss der erklärenden Variablen $x$).
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
Wir definieren
|
|||
|
$$R^2:=\frac{SS_R}{SS_Y}, R^2 \in [0,1]$$
|
|||
|
als Mass für den Antwil der totalen Variation, welche durch die Regression erklärt wird. \\
|
|||
|
Wenn $R^2$ gegen $1$ geht ist es eine "gute" Regression.
|
|||
|
|
|||
|
$$R^2 = \hat{\rho}_{Y\hat{Y}}^2$$
|
|||
|
|
|||
|
\subsubsection{Vorgehen bei einfacher linearer Regression}
|
|||
|
\begin{enumerate}
|
|||
|
\item Plotten von $Y$ und $x$ in einem Streudiagramm. Überprüfen, ob eine lineare Regression überhaupt sinnvoll ist.
|
|||
|
\item Anpassen der Regressionsgeraden; d.h. Berechnung der Punktschätzer $\beta_0, \beta_1$
|
|||
|
\item Testen ob erklärende Variable $x$ einen Einfluss auf die Zielvariable $Y$ hat mittels \textit{t-Test} für $H_0 : \beta_1 = 0$ und $H_A : \beta_1 \neq 0$. Falls dieser Test ein nicht-signifikantes Ergebnis liefert, so hat die erklärende Variable keinen signifikanten Einfluss auf die Zielvariable.
|
|||
|
\item Testen ob Regression durch Nullpunkt geht mit \textit{t-Test} für $H_0 : \beta_1 = 0$ und $H_A : \beta_1 \neq 0$. Falls dieser Test ein nicht-signifikantes Ergebnis liefert, so kann man das kleinere Modell mit Regression durch Nullpunkt benutzen (ohne Achsenabschnitt $\beta_0$).
|
|||
|
\item Bei Interesse: Angabe von Vertrauensintervallen für $\beta_0$ und $\beta_1$.
|
|||
|
\item Angabe des Bestimmtheitsmass $R^2$. Dies ist in gewissem Sinne eine informellere (und zusätzliche) Quantifizierung als der statistische Test in Punkt 3.
|
|||
|
\item Überprüfen der Modell-Voraussetzungen mittels Residuenanalyse (vgl. \ref{sec:resid}).
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
\subsection{Residuenanalyse}
|
|||
|
\label{sec:resid}
|
|||
|
\textbf{Annahmen und deren Überprüfung}:
|
|||
|
\begin{enumerate}
|
|||
|
\item $\mathbb{E}(E_i)=0$ (\textit{Tukey-Anscombe Plot}, vgl. \ref{sec:tukey}) \\
|
|||
|
Es gilt $\mathbb{E}(Y_i)=\beta_0+\beta_1x_i+\mathbb{E}(E_i)=\beta_0+\beta_1x_i$, sodass keine systematischen Fehler auftreten können. Dennoch können Abweichungen auftreten (z.B. komplizierte quadr. Verteilung)
|
|||
|
\item $E_1,E_2,...,E_n$ i.i.d. (Plot bzgl. \textit{serieller Korrelation}, \textit{Tukey-Anscombe}) \\
|
|||
|
Die Fehler müssen unabhängig voneinander sein, insbesondere sind $\mathrm{Cor}(E_i,E_j) = 0$ für $i \neq j$, was bedeutet, dass keine \textit{serielle Korrelation} auftritt. Da die Fehler gleich verteilt sein müssen, ist die Varianz der Fehler auch gleich.
|
|||
|
\item $E_1,E_2,...,E_n$ i.i.d. $\mathcal{N}(0,\sigma^2)$ \\
|
|||
|
Es wird angenommen, dass die Fehler normalverteilt sind. Überprüfung mit Normalplot der Residuen.
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
\subsubsection{Tukey-Anscombe Plot}
|
|||
|
\label{sec:tukey}
|
|||
|
Plotten der Residuen $R_i$ gegen die angepassten Werte $\hat{y_i}$. \\
|
|||
|
Idealerweise sind die Punkte gleichmässig um $0$ gestreut.
|
|||
|
Bei verletzen Modellannehmen können auftreten:
|
|||
|
\begin{itemize}
|
|||
|
\item Kegelförmiges anwachsen von $\hat{y_i}$. Falls $\hat{y_i} > 0$ versuche
|
|||
|
$$\log(Y_i) = \beta_0+\beta_1 x_i + E_i$$
|
|||
|
\item Ausreisser (Versuche robuste Regression)
|
|||
|
\item Unregelmässige Struktur (möglicherweise kein linearer Zusammenhang)
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
\subsubsection{Serielle Korrelation}
|
|||
|
Überprüfung der Unabhängigkeitsannahme der $E_1, E_2, ..., E_n$: Plotten von $r_i$ gegen $i$. \\
|
|||
|
Dabei sollte eine gleichmässige Verteilung um $0$ entstehen.
|
|||
|
|
|||
|
\subsubsection{Normaleplot}
|
|||
|
Wie in \ref{sec:normalplot} erwarten wir möglichst eine Gerade, falls die Fehler normalverteilt sind.
|
|||
|
|
|||
|
\subsection{Multiple lineare Regression}
|
|||
|
Oft sind erklärende Variablen $x_{i,1},...,x_{i,p-1}; (p>2)$
|
|||
|
\subsubsection{Modell}
|
|||
|
$$Y_i = \beta_0 + \sum_{j=1}^{p-1}\beta_jx_{i,j}+E_i, i \in \mathbb{N} \leq n$$
|
|||
|
$$E_1, E_2, ..., E_i \mathrm{\; i.i.d.},\mathbb{E}(E_i)=0, \mathrm{Var}(E_i)=\sigma^2$$
|
|||
|
|
|||
|
In Matrixschreibweise:
|
|||
|
$$\underbrace{Y}_{n \times 1} = \underbrace{X}_{n \times p}\times\underbrace{\beta}_{p \times 1}+\underbrace{E}_{n \times 1}$$
|
|||
|
wobei:
|
|||
|
\begin{itemize}
|
|||
|
\item $Y = (Y_1,...,Y_n)^T$ \\
|
|||
|
\item $X: (n \times p)$-Matrix mit Spaltenvektoren $(1,1,...1)^T,(x_{1,1},x_{2,1},...,x_{n,1})^T,...,(x_{1,p-1},x_{2,p-1},...,x_{n,p-1})^T$\\
|
|||
|
\item $\beta = (\beta_0,...,\beta_{p-1})$, der Parametervektor \\
|
|||
|
\item $E = (E_1, ..., E_n)^T$, der Fehlervektor
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
Somit ist eine \textbf{einfache lineare Regression} \\
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{ccc}
|
|||
|
$$p = 2,$$ & $$X = \begin{pmatrix}
|
|||
|
1 & x_1 \\
|
|||
|
1 & x_2 \\
|
|||
|
\vdots & \vdots \\
|
|||
|
1 & x_n
|
|||
|
\end{pmatrix},$$ & $$\beta = \begin{pmatrix}
|
|||
|
\beta_0 \\
|
|||
|
\beta_1
|
|||
|
\end{pmatrix}^T$$
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
Analog dazu für \textbf{lineare Regression mit mehreren erklärenden Varablen}
|
|||
|
$Y_i = \beta_0 + \beta_1x_{i,1}+\beta_2x_{i,2} + E_i, i \in \mathbb{N} \leq n$
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{ccc}
|
|||
|
$$p = 3,$$ & $$X = \begin{pmatrix}
|
|||
|
1 & x_{1,1} & x_{1,2} \\
|
|||
|
1 & x_{2,1} & x_{2,2} \\
|
|||
|
\vdots & \vdots & \vdots \\
|
|||
|
1 & x_{n,1} & x_{n,2}
|
|||
|
\end{pmatrix},$$ & $$\beta = \begin{pmatrix}
|
|||
|
\beta_0 \\
|
|||
|
\beta_1 \\
|
|||
|
\beta_2
|
|||
|
\end{pmatrix}^T$$
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
ebenfalls für \textbf{lineare Regression mit quadratisch erklärenden Varablen}
|
|||
|
$Y_i = \beta_0 + \beta_1x_{i}+\beta_2x_{i}^2 + E_i, i \in \mathbb{N} \leq n$
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{ccc}
|
|||
|
$$p = 3,$$ & $$X = \begin{pmatrix}
|
|||
|
1 & x_{1} & x_{1}^2 \\
|
|||
|
1 & x_{2} & x_{2}^2 \\
|
|||
|
\vdots & \vdots & \vdots \\
|
|||
|
1 & x_{n} & x_{n}^2
|
|||
|
\end{pmatrix},$$ & $$\beta = \begin{pmatrix}
|
|||
|
\beta_0 \\
|
|||
|
\beta_1 \\
|
|||
|
\beta_2
|
|||
|
\end{pmatrix}^T$$
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
und schlussendlich für eine \textbf{Regression mit transformierten erklärenden Varablen} \\
|
|||
|
$Y_i = \beta_0 + \beta_1\log(x_{i,2})+\beta_2\sin(\pi x_{i,3}) + E_i, i \in \mathbb{N} \leq n$
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{ccc}
|
|||
|
$$p = 3,$$ & $$X = \begin{pmatrix}
|
|||
|
1 & \log(x_{1,2}) & \sin(\pi x_{1,3}) \\
|
|||
|
1 & \log(x_{2,2}) & \sin(\pi x_{2,3}) \\
|
|||
|
\vdots & \vdots & \vdots \\
|
|||
|
1 & \log(x_{n,2}) & \sin(\pi x_{n,3})
|
|||
|
\end{pmatrix},$$ & $$\beta = \begin{pmatrix}
|
|||
|
\beta_0 \\
|
|||
|
\beta_1 \\
|
|||
|
\beta_2
|
|||
|
\end{pmatrix}^T$$
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
|
|||
|
\subsubsection{Interpretation}
|
|||
|
\begin{itemize}
|
|||
|
\item Bei \textbf{einfacher linearer Regression} ist $\beta_1$ die erwartete Zunahme der Zielgrösse bei Erhöhung von $x_1$ um eine Einheit.
|
|||
|
\item Bei \textbf{multipler linearer Regression} ist $\beta_i$ die erwartete Zunahme der Zielgrösse bei Erhöhung von $x_i$ um eine Einheit - bei \textbf{Fixierung der anderen Variablen}.
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
\subsubsection{Parameterschätzung}
|
|||
|
Auch hier benutzen wir die \textit{Methode der kleinsten Quadrate}. \\
|
|||
|
$$\hat{\beta_0},\hat{\beta_1},...,\hat{\beta}_{p-1} \mathrm{\; Minimierung \; von \;} \sum_{i=1}^n(Y_i-(\beta_0+\beta_1x_{i,1}+...+\beta_{p-1}x_{i,p-1}))^2,$$
|
|||
|
falls $p < n$
|
|||
|
$$\hat{\beta} = (X^TX)^{-1}X^TY.$$
|
|||
|
Für die Fehlervarianz
|
|||
|
$$\hat{\sigma} = \frac{1}{n-p}\sum_{i=1}^nR^2_i,R_i = Y_i - \bigg(\hat{\beta}_0+\sum_{j=1}^{p-1}\hat{\beta}_jx_{i,j}\bigg)$$
|
|||
|
|
|||
|
% TODO: t-Test
|
|||
|
|
|||
|
\subsubsection{F-Test}
|
|||
|
Prüft, ob es mindestens eine erklärende Variable gibt, die einen signifikanten Effekt auf die Zielvariable hat.
|
|||
|
\begin{center}
|
|||
|
\begin{tabular}{lll}
|
|||
|
$H_0:$ & $\beta_1 = ... = \beta_{p-1} = 0$ \\
|
|||
|
$H_A:$ & mindestens ein $\beta_j \neq 0$, & $j \in \mathbb{N} \leq p-1 $
|
|||
|
\end{tabular}
|
|||
|
\end{center}
|
|||
|
|
|||
|
Hier können einzelne Variablen signifikant sein und andere nicht. Bei starker Korrelation zwischen zwei kann man eine weglassen, da keine neue Information.
|
|||
|
|
|||
|
\subsubsection{Bestimmtheitsmass $R^2$}
|
|||
|
Es gilt wie in \ref{sec:r2}
|
|||
|
$$R^2 = \hat{\rho}_{Y\hat{Y}}^2$$
|
|||
|
|
|||
|
\begin{center}
|
|||
|
\rule{.5\linewidth}{0.25pt}
|
|||
|
\end{center}
|
|||
|
|
|||
|
\section{R}
|
|||
|
\subsection{Wahrscheinlichkeitsverteilungen}
|
|||
|
\lstinline{xxx} Name der Verteilung $X$ (z.B. \lstinline{binom} oder \lstinline{pois}): \\
|
|||
|
\lstinline{dxxx} berechnet $P[X=x]$ \\
|
|||
|
\lstinline{pxxx} berechnet $P[X\leq x]$ \\
|
|||
|
\lstinline{rxxx} liefert Zufallszahl gemäss $X$
|
|||
|
|
|||
|
\subsection{Verteilungen}
|
|||
|
\lstinline{pt} für kumulative Verteilungsfunktion \\
|
|||
|
\lstinline{qt} für Quantile
|
|||
|
|
|||
|
\subsection{Wilcoxon-Test}
|
|||
|
\label{sec:wilcoxon}
|
|||
|
\lstinline{x} ist Array von Daten, $\mu$ der Median
|
|||
|
\begin{lstlisting}
|
|||
|
wilcox.test(x = x, alternative = "greater", mu = 80)
|
|||
|
\end{lstlisting}
|
|||
|
|
|||
|
\subsection{Regression}
|
|||
|
\label{sec:rreg}
|
|||
|
\lstinline{x} und \lstinline{x} sind Arrays von Daten, \lstinline{lm} schätzt ein \textit{linear model} und \lstinline{summary()} gibt die Schätzwerte aus
|
|||
|
\begin{lstlisting}
|
|||
|
fm <- lm(y ~ x)
|
|||
|
summary(fm)
|
|||
|
\end{lstlisting}
|
|||
|
% TODO: Add sample output for parameters
|
|||
|
|
|||
|
\begin{center}
|
|||
|
\rule{\linewidth}{0.25pt}
|
|||
|
\end{center}
|
|||
|
|
|||
|
\scriptsize
|
|||
|
|
|||
|
\end{multicols*}
|
|||
|
|
|||
|
\newpage
|
|||
|
|
|||
|
\begin{multicols*}{2}
|
|||
|
\section*{Anhang}
|
|||
|
\label{sec:anhang}
|
|||
|
\begin{figure}[H]
|
|||
|
\begin{tabular}{l|llll|c|c}
|
|||
|
\hline
|
|||
|
\multirow{2}{*}{} & \multicolumn{4}{c}{Annahmen} & \multicolumn{1}{|c}{\multirow{2}{*}{\begin{tabular}{l}$n_\mathrm{min}$ bei \\ $\alpha = 0.05$\end{tabular}}} & \multicolumn{1}{|c}{\multirow{2}{*}{\begin{tabular}{c}Macht \\ für Bsp.\end{tabular}}} \\
|
|||
|
& \multicolumn{1}{c}{\begin{tabular}{c}$\sigma_X$ \\ bekannt\end{tabular}} & \multicolumn{1}{c}{$X_i \sim \mathcal{N}$} & \multicolumn{1}{c}{\begin{tabular}{c}sym. \\ Verteilung\end{tabular}} & \multicolumn{1}{c}{i.i.d.} & \multicolumn{1}{|c|}{} & \multicolumn{1}{c}{} \\
|
|||
|
\hline\hline
|
|||
|
z-Test & \multicolumn{1}{c}{$\sbullet$} & \multicolumn{1}{c}{$\sbullet$} & \multicolumn{1}{c}{$\sbullet$} & \multicolumn{1}{c|}{$\sbullet$} & 1 & 89\% \\
|
|||
|
t-Test & & \multicolumn{1}{c}{$\sbullet$} & \multicolumn{1}{c}{$\sbullet$} & \multicolumn{1}{c|}{$\sbullet$} & 2 & 79\% \\
|
|||
|
Wilcoxon & & & \multicolumn{1}{c}{$\sbullet$} & \multicolumn{1}{c|}{$\sbullet$} & 6 & 79\% \\
|
|||
|
Vorzeichen & & & & \multicolumn{1}{c|}{$\sbullet$} & 5 & 48\% \\
|
|||
|
\hline
|
|||
|
\end{tabular}
|
|||
|
\caption{Übersicht der verschiedenen Tests für $\mu$}
|
|||
|
\label{fig:tests}
|
|||
|
\end{figure}
|
|||
|
|
|||
|
\section*{Referenzen}
|
|||
|
\begin{enumerate}
|
|||
|
\item "Vorlesungsskript Mathematik IV für Agrarwissenschaften, Erdwissenschaften, Lebensmittelwissenschaften und Umweltnaturwissenschaften", Dr. Jan Ernest, HS19 \\
|
|||
|
\item Statistik\_MatheIV.pdf, scmelina, HS18
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
\url{https://n.ethz.ch/~jannisp} \\
|
|||
|
Jannis Portmann, 2020 \\
|
|||
|
\doclicenseImage
|
|||
|
\end{multicols*}
|
|||
|
|
|||
|
\end{document}
|