mathematik-v-zf/Mathematik-V-ZF.tex
2021-07-22 15:56:59 +02:00

236 lines
7.1 KiB
TeX

\documentclass[8pt,landscape]{article}
\usepackage{multicol}
\usepackage{calc}
\usepackage{bookmark}
\usepackage{ifthen}
\usepackage[a4paper, landscape]{geometry}
\usepackage{hyperref}
\usepackage{ccicons}
\usepackage{amsmath, amsfonts, amssymb, amsthm}
\usepackage{listings}
\usepackage{graphicx}
\usepackage{fontawesome5}
\usepackage{xcolor}
\usepackage{float}
\usepackage{apacite}
\usepackage[
type={CC},
modifier={by-sa},
version={3.0}
]{doclicense}
\graphicspath{{./img/}}
\definecolor{codegreen}{rgb}{0,0.6,0}
\definecolor{codegray}{rgb}{0.5,0.5,0.5}
\definecolor{codepurple}{rgb}{0.58,0,0.82}
\definecolor{backcolour}{rgb}{0.95,0.95,0.92}
\lstdefinestyle{mystyle}{
backgroundcolor=\color{backcolour},
commentstyle=\color{codegreen},
keywordstyle=\color{magenta},
numberstyle=\tiny\color{codegray},
stringstyle=\color{codepurple},
basicstyle=\ttfamily\footnotesize,
breakatwhitespace=false,
breaklines=true,
captionpos=b,
keepspaces=true,
numbers=left,
numbersep=5pt,
showspaces=false,
showstringspaces=false,
showtabs=false,
tabsize=2
}
\lstset{style=mystyle}
% To make this come out properly in landscape mode, do one of the following
% 1.
% pdflatex latexsheet.tex
%
% 2.
% latex latexsheet.tex
% dvips -P pdf -t landscape latexsheet.dvi
% ps2pdf latexsheet.ps
% If you're reading this, be prepared for confusion. Making this was
% a learning experience for me, and it shows. Much of the placement
% was hacked in; if you make it better, let me know...
% 2008-04
% Changed page margin code to use the geometry package. Also added code for
% conditional page margins, depending on paper size. Thanks to Uwe Ziegenhagen
% for the suggestions.
% 2006-08
% Made changes based on suggestions from Gene Cooperman. <gene at ccs.neu.edu>
% To Do:
% \listoffigures \listoftables
% \setcounter{secnumdepth}{0}
% This sets page margins to .5 inch if using letter paper, and to 1cm
% if using A4 paper. (This probably isn't strictly necessary.)
% If using another size paper, use default 1cm margins.
\ifthenelse{\lengthtest { \paperwidth = 11in}}
{ \geometry{top=.5in,left=.5in,right=.5in,bottom=.5in} }
{\ifthenelse{ \lengthtest{ \paperwidth = 297mm}}
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
}
% Turn off header and footer
\pagestyle{empty}
% Redefine section commands to use less space
\makeatletter
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%x
{\normalfont\large\bfseries}}
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
{-1explus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%
{\normalfont\normalsize\bfseries}}
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{1ex plus .2ex}%
{\normalfont\small\bfseries}}
\makeatother
% Define BibTeX command
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
% Don't print section numbers
% \setcounter{secnumdepth}{0}
\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt plus 0.5ex}
% -----------------------------------------------------------------------
\begin{document}
\raggedright
\footnotesize
\begin{multicols*}{3}
% multicol parameters
% These lengths are set only within the two main columns
%\setlength{\columnseprule}{0.25pt}
\setlength{\premulticols}{1pt}
\setlength{\postmulticols}{1pt}
\setlength{\multicolsep}{1pt}
\setlength{\columnsep}{2pt}
\begin{center}
\Large{ZF Mathematik V} \\
\small{701-0106-00L Mathematik V, bei M. A. Sprenger} \\
\small{Jannis Portmann \the\year} \\
{\ccbysa}
\rule{\linewidth}{0.25pt}
\end{center}
\section{Gewöhnliche Differentialgleichungen}
\subsection{1. Ordnung}
$$\frac{dH}{dt} = v_0 - \frac{H(t)}{\tau}$$
Eine Lösung davon
$$H(t) = (H_0 - v_0\tau)^{\frac{-t}{\tau}} + v_0 \tau$$
\subsection{Fliessgleichgewicht}
Für eine Funktion $F$, bei
$$\frac{dF}{dt} = 0$$
\section{Vektoranalysis}
\subsection{Satz von Gauss}
$$\iint_A \mathrm{div} \, v \, dA = \oint_C \, v \, dr$$
Flächenintegral der Divergenz von $v$ = Fluss von $v$ durch Rand $C$
\subsection{Satz von Stokes}
$$\iint_A \mathrm{rot} \, v \, dA = \iint_A \xi \, dA = \oint_C \, v \, ds$$
Flächenintegral der Rotation von $v$ = Linienintegral von $v$ entlang $C$ (Zirkulation)
\vspace{5px}
\textbf{Bsp} \\
Für eine Vorticity-Dsik mit $\xi = \xi_0$, $r=2R$ soll $u_\varphi$ bei $r=4R$ berechnet werden. \\
Der Satz von Stokes lifert:
$$\xi_0 \cdot (2R)^2 \pi = \int_0^{2\pi}u_\varphi \cdot 4R \cdot d\varphi$$
nach $u_\varphi$ auflösen: $u_\varphi = \frac{1}{2} \xi_0 R$
\subsection{Koordinatentransformation}
Wir verwenden meistens geographische Koordinaten.
\begin{figure}[H]
\centering
\includegraphics[width=.15\textwidth]{1024px-Geographic_coordinates_sphere.png}
\caption{Geographisches Koorinatensystem}
\label{fig:geo-coordinates}
\end{figure}
\vspace{5px}
Wir definieren für Kugelkoordinaten einen Würfel mit:
$$dx = h_1 \, da$$
$$dy = h_2 \, db$$
$$dz = h_3 \, dc$$
wobei jeweils $\vec{e_x} = \vec{e_a}$ etc. \\
Aus dem obigen folgen mit dem Satz von Gauss:
$$\mathrm{div} \, v = \frac{1}{h_1 \, h_2} \bigg(\frac{\partial}{\partial a}(u \, h_2) + \frac{\partial}{\partial b}(v \, h_1) \bigg)$$
Analog mit dem Satz von Stokes:
$$\xi = \frac{1}{r \, \cos\varphi} \frac{\partial v}{\partial \lambda} - \frac{1}{r}\frac{\partial u}{\partial \varphi} + \frac{\tan \varphi}{r} u$$
Der letzte Term folgt aus der Produkteregel!
\section{Taylor-Reihe}
An der stelle $a$ einer Funtkion $f(x)$
$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + ...$$
\section{Operators}
$$\mathrm{div} \, \vec{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$
$$\mathrm{rot} \, \vec{u_{xy}} = \nabla \times \vec{u} = (\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y})$$
$$\mathrm{rot} \, \vec{u_{xyz}} = \nabla \times \vec{u} = (\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}, \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}, \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y})$$
$$\nabla = \begin{pmatrix}
\frac{\partial}{\partial x},
\frac{\partial}{\partial y},
\frac{\partial}{\partial z}
\end{pmatrix}$$
\scriptsize
\section{Copyleft}
\doclicenseImage \\
Dieses Dokument ist unter (CC BY-SA 3.0) freigegeben \\
\faGlobeEurope \kern 1em \url{https://n.ethz.ch/~jannisp} \\
\faGit \kern 0.88em \url{https://git.thisfro.ch/thisfro/mathematik-v-zf} \\
Jannis Portmann, FS21
\section{Referenzen}
\begin{enumerate}
\item Skript zur Vorlesung
\end{enumerate}
\section*{Bildquellen}
\begin{itemize}
\item Abb. \ref{fig:geo-coordinates}: E\^(nix) \& ttog, \url{https://de.wikipedia.org/wiki/Geographische_Koordinaten#/media/Datei:Geographic_coordinates_sphere.svg}
\end{itemize}
\end{multicols*}
\end{document}