Compare commits
4 commits
3c31741db7
...
0403a15eea
Author | SHA1 | Date | |
---|---|---|---|
|
0403a15eea | ||
|
47b521446c | ||
|
91b6105f77 | ||
|
1e9d3a7786 |
1 changed files with 12 additions and 3 deletions
|
@ -165,6 +165,14 @@ Flächenintegral der Divergenz von $v$ = Fluss von $v$ durch Rand $C$
|
||||||
$$\iint_A \mathrm{rot} \, v \, dA = \iint_A \zeta \, dA = \oint_C \, v \, ds$$
|
$$\iint_A \mathrm{rot} \, v \, dA = \iint_A \zeta \, dA = \oint_C \, v \, ds$$
|
||||||
Flächenintegral der Rotation von $v$ = Linienintegral von $v$ entlang $C$ (Zirkulation)
|
Flächenintegral der Rotation von $v$ = Linienintegral von $v$ entlang $C$ (Zirkulation)
|
||||||
|
|
||||||
|
\vspace{5px}
|
||||||
|
|
||||||
|
\textbf{Bsp} \\
|
||||||
|
Für eine Vorticity-Dsik mit $\zeta = \zeta_0$, $r=2R$ soll $u_\varphi$ bei $r=4R$ berechnet werden. \\
|
||||||
|
Der Satz von Stokes lifert:
|
||||||
|
$$\zeta_0 \cdot (2R)^2 \pi = \int_0^{2\pi}u_\varphi \cdot 4R \cdot d\varphi$$
|
||||||
|
nach $u_\varphi$ auflösen: $u_\varphi = \frac{1}{2} \zeta_0 R$
|
||||||
|
|
||||||
\section{Taylor-Reihe}
|
\section{Taylor-Reihe}
|
||||||
An der stelle $a$ einer Funtkion $f(x)$
|
An der stelle $a$ einer Funtkion $f(x)$
|
||||||
$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + ...$$
|
$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + ...$$
|
||||||
|
@ -172,7 +180,8 @@ $$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x
|
||||||
\section{Operators}
|
\section{Operators}
|
||||||
$$\mathrm{div} \, \vec{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$
|
$$\mathrm{div} \, \vec{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$
|
||||||
|
|
||||||
$$\mathrm{rot} \, \vec{u} = \nabla \times \vec{u} = -\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$
|
$$\mathrm{rot} \, \vec{u_{xy}} = \nabla \times \vec{u} = (\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y})$$
|
||||||
|
$$\mathrm{rot} \, \vec{u_{xyz}} = \nabla \times \vec{u} = (\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}, \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}, \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y})$$
|
||||||
|
|
||||||
$$\nabla = \begin{pmatrix}
|
$$\nabla = \begin{pmatrix}
|
||||||
\frac{\partial}{\partial x},
|
\frac{\partial}{\partial x},
|
||||||
|
@ -187,8 +196,8 @@ $$\nabla = \begin{pmatrix}
|
||||||
\doclicenseImage \\
|
\doclicenseImage \\
|
||||||
Dieses Dokument ist unter (CC BY-SA 3.0) freigegeben \\
|
Dieses Dokument ist unter (CC BY-SA 3.0) freigegeben \\
|
||||||
\faGlobeEurope \kern 1em \url{https://n.ethz.ch/~jannisp} \\
|
\faGlobeEurope \kern 1em \url{https://n.ethz.ch/~jannisp} \\
|
||||||
\faGit \kern 0.88em \url{https://git.thisfro.ch/thisfro/wettersysteme-zf} \\
|
\faGit \kern 0.88em \url{https://git.thisfro.ch/thisfro/mathematik-v-zf} \\
|
||||||
Jannis Portmann, HS20
|
Jannis Portmann, FS21
|
||||||
|
|
||||||
\section{Referenzen}
|
\section{Referenzen}
|
||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
|
|
Loading…
Reference in a new issue