diff --git a/main.tex b/main.tex index f2ebbef..7922f38 100644 --- a/main.tex +++ b/main.tex @@ -145,14 +145,41 @@ \end{center} \section{Equations} -\subsection{Navier-Stokes} +\subsection{Fundamental equations} +\subsubsection{Navier-Stokes} \begin{equation} - \frac{D}{Dt} + \frac{Du}{Dt} = \underbrace{-\frac{1}{\rho}\nabla p}_\mathrm{Pressure} - \underbrace{(2\Omega \times u)}_\mathrm{Coriolis} - \underbrace{g'K}_\mathrm{Gravity} + \underbrace{F^{**}}_\mathrm{Viscous} +\end{equation} + +\subsubsection{Conservation of mass} +\begin{equation} + \frac{D \rho}{Dt} + \rho(\nabla u) = 0 +\end{equation} + +\subsubsection{First law of thermodynamics} +\begin{equation} + \frac{D\theta}{Dt} = \bigg(\frac{\theta}{c_p T} \bigg) \mathcal{H} +\end{equation} +if $\mathcal{H} = 0$, the process is \textit{adiabatic} + +\subsubsection{Equation of state} +\begin{equation} + p = \rho RT \end{equation} \subsection{Circulation} \begin{equation} - C = \oint_c u \, dc = \oint (u \, dx + v \, dy + w \, dz) + C = \oint_c \vec{v} \, dc = \oint (u \, dx + v \, dy + w \, dz) = \oint_0^{2\pi} \vec{v} \, r \, d\phi +\end{equation} + +\subsection{Quasi geostrophic system of equations} +\begin{equation} + \zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} +\end{equation} + +\subsubsection*{Vorticity equation} +\begin{equation} + \frac{D_h}{Dt} \zeta + \beta v = -f_0(\nabla_h \vec{v}) \end{equation} \section{Concepts} @@ -162,6 +189,20 @@ \frac{\partial}{\partial z} v_G = \bigg(\frac{1}{f}\frac{g}{\theta_0}\bigg)(k \times \nabla_h \theta^*) \end{equation} +\subsection{$Q$-Vector} +The $Q$-Vector indicates if there is cyclogenesis ($\mathcal{F} < 0$, $\mathcal{F} \sim \nabla_h Q$) +\vspace{2mm} \\ +How to determine the $Q$-Vector on weather charts: +\begin{enumerate} + \item Locate regions with: + \begin{itemize} + \item Large temperature gradient + \item Strong wind change + \end{itemize} + \item Determine wind-change vector + \item Rotate that vector by $+90^\circ$ +\end{enumerate} + \scriptsize \section*{Copyleft}