Create mathematical concepts chapter
This commit is contained in:
parent
f3fcfc547b
commit
b79d5f51ed
3 changed files with 94 additions and 5 deletions
BIN
img/non-stationary.png
Normal file
BIN
img/non-stationary.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 33 KiB |
BIN
img/stationary.png
Normal file
BIN
img/stationary.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 33 KiB |
99
main.tex
99
main.tex
|
@ -12,7 +12,6 @@
|
||||||
\usepackage{fontawesome5}
|
\usepackage{fontawesome5}
|
||||||
\usepackage{xcolor}
|
\usepackage{xcolor}
|
||||||
\usepackage{float}
|
\usepackage{float}
|
||||||
\usepackage{apacite}
|
|
||||||
\usepackage[
|
\usepackage[
|
||||||
type={CC},
|
type={CC},
|
||||||
modifier={by-sa},
|
modifier={by-sa},
|
||||||
|
@ -137,14 +136,102 @@
|
||||||
\setlength{\columnsep}{2pt}
|
\setlength{\columnsep}{2pt}
|
||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\Large{ats-zf} \\
|
\Large{Applied Time Series } \\
|
||||||
\small{\href{http://www.vvz.ethz.ch/}{VL-NUMMER}} \\
|
\small{\href{http://vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2021S&ansicht=LEHRVERANSTALTUNGEN&lerneinheitId=149645&lang=de}{401-6624-11L}} \\
|
||||||
\small{Jannis Portmann \the\year} \\
|
\small{Jannis Portmann \the\year} \\
|
||||||
{\ccbysa}
|
{\ccbysa}
|
||||||
\rule{\linewidth}{0.25pt}
|
\rule{\linewidth}{0.25pt}
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
\section{First}
|
\section{Mathematical Concepts}
|
||||||
|
|
||||||
|
For the \textbf{time series process}, we have to assume the following
|
||||||
|
|
||||||
|
\subsection{Stochastic Model}
|
||||||
|
From the lecture
|
||||||
|
\begin{quote}
|
||||||
|
A time series process is a set $\{X_t, t \in T\}$ of random variables, where $T$ is the set of times. Each of the random variables $X_t,t \in t$ has a univariate probability distribution $F_t$.
|
||||||
|
\end{quote}
|
||||||
|
\begin{itemize}
|
||||||
|
\item If we exclusively consider time series processes with
|
||||||
|
equidistant time intervals, we can enumerate $\{T = 1,2,3,...\}$
|
||||||
|
\item An observed time series is a realization of $X = \{X_1 ,..., X_n\}$,
|
||||||
|
and is denoted with small letters as $x = (x_1 ,... , x_n)$.
|
||||||
|
\item We have a multivariate distribution, but only 1 observation
|
||||||
|
(i.e. 1 realization from this distribution) is available. In order
|
||||||
|
to perform “statistics”, we require some additional structure.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\subsection{Stationarity}
|
||||||
|
\subsubsection{Strict}
|
||||||
|
For being able to do statistics with time series, we require that the
|
||||||
|
series “doesn’t change its probabilistic character” over time. This is
|
||||||
|
mathematically formulated by strict stationarity.
|
||||||
|
|
||||||
|
\begin{quote}
|
||||||
|
A time series $\{X_t, t \in T\}$ is strictly stationary, if the joint distribution of the random vector $(X_t ,... , X_{t+k})$ is equal to the one of $(X_s ,... , X_{s+k})$ for all combinations of $t,s$ and $k$
|
||||||
|
\end{quote}
|
||||||
|
|
||||||
|
\begin{tabular}{ll}
|
||||||
|
$X_t \sim F$ & all $X_t$ are identically distributed \\
|
||||||
|
$E[X_t] = \mu$ & all $X_t$ have identical expected value \\
|
||||||
|
$Var(X_t) = \sigma^2$ & all $X_t$ have identical variance \\
|
||||||
|
$Cov[X_t,X_{t+h}] = \gamma_h$ & autocovariance depends only on lag $h$ \\
|
||||||
|
\end{tabular}
|
||||||
|
|
||||||
|
\subsubsection{Weak}
|
||||||
|
It is impossible to „prove“ the theoretical concept of stationarity from data. We can only search for evidence in favor or against it. \\
|
||||||
|
\vspace{0.1cm}
|
||||||
|
However, with strict stationarity, even finding evidence only is too difficult. We thus resort to the concept of weak stationarity.
|
||||||
|
|
||||||
|
\begin{quote}
|
||||||
|
A time series $\{X_t , t \in T\}$ is said to be weakly stationary, if \\
|
||||||
|
$E[X_t] = \mu$ \\
|
||||||
|
$Cov(X_t,X_{t+h} = \gamma_h)$, for all lags $h$ \\
|
||||||
|
and thus $Var(X_t) = \sigma^2$
|
||||||
|
\end{quote}
|
||||||
|
|
||||||
|
\subsubsection{Testing stationarity}
|
||||||
|
\begin{itemize}
|
||||||
|
\item In time series analysis, we need to verify whether the series has arisen from a stationary process or not. Be careful: stationarity is a property of the process, and not of the data.
|
||||||
|
\item Treat stationarity as a hypothesis! We may be able to reject it when the data strongly speak against it. However, we can never prove stationarity with data. At best, it is plausible.
|
||||||
|
\item Formal tests for stationarity do exist. We discourage their use due to their low power for detecting general non-stationarity, as well as their complexity.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\textbf{Evidence for non-stationarity}
|
||||||
|
\begin{itemize}
|
||||||
|
\item Trend, i.e. non-constant expected value
|
||||||
|
\item Seasonality, i.e. deterministic, periodical oscillations
|
||||||
|
\item Non-constant variance, i.e. multiplicative error
|
||||||
|
\item Non-constant dependency structure
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\textbf{Strategies for Detecting Non-Stationarity}
|
||||||
|
\begin{itemize}
|
||||||
|
\item Time series plot
|
||||||
|
\subitem - non-constant expected value (trend/seasonal effect)
|
||||||
|
\subitem - changes in the dependency structure
|
||||||
|
\subitem - non-constant variance
|
||||||
|
\item Correlogram (presented later...)
|
||||||
|
\subitem - non-constant expected value (trend/seasonal effect)
|
||||||
|
\subitem - changes in the dependency structure
|
||||||
|
\end{itemize}
|
||||||
|
A (sometimes) useful trick, especially when working with the correlogram, is to split up the series in two or more parts, and producing plots for each of the pieces separately.
|
||||||
|
|
||||||
|
\subsection{Examples}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=.25\textwidth]{stationary.png}
|
||||||
|
\caption{Stationary Series}
|
||||||
|
\label{fig:stationary}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=.25\textwidth]{non-stationary.png}
|
||||||
|
\caption{Non-stationary Series}
|
||||||
|
\label{fig:non-stationary}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
\scriptsize
|
\scriptsize
|
||||||
|
|
||||||
|
@ -153,15 +240,17 @@
|
||||||
\doclicenseImage \\
|
\doclicenseImage \\
|
||||||
Dieses Dokument ist unter (CC BY-SA 3.0) freigegeben \\
|
Dieses Dokument ist unter (CC BY-SA 3.0) freigegeben \\
|
||||||
\faGlobeEurope \kern 1em \url{https://n.ethz.ch/~jannisp/ats-zf} \\
|
\faGlobeEurope \kern 1em \url{https://n.ethz.ch/~jannisp/ats-zf} \\
|
||||||
\faGit \kern 0.88em \url{https://git.thisfro.ch/thisfro/ats-zf}} \\
|
\faGit \kern 0.88em \url{https://git.thisfro.ch/thisfro/ats-zf} \\
|
||||||
Jannis Portmann, FS21
|
Jannis Portmann, FS21
|
||||||
|
|
||||||
\section*{Referenzen}
|
\section*{Referenzen}
|
||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
|
\item Skript
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
\section*{Bildquellen}
|
\section*{Bildquellen}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
|
\item Bild
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\end{multicols*}
|
\end{multicols*}
|
||||||
|
|
Loading…
Reference in a new issue